ГОСУДАРСТВЕННЫЙ ДОКЛАД
О СОСТОЯНИИ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ РЕСУРСОВ
САМАРСКОЙ ОБЛАСТИ за 2015 ГОД

Доклад подготовлен по заказу министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области

Координатор проекта:
Ларинов А.И. – министр лесного хозяйства, охраны окружающей среды и природопользования Самарской области.

Редакционная коллегия
Председатель:
Сафонова Т.Н. – заместитель министра лесного хозяйства, охраны окружающей среды и природопользования Самарской области.

Члены коллегии:
Ардахов А.П. – руководитель управления министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области; Бардинова И.В. – директор ГБУ СО «Природоохранный центр»; Бабичев Е.В. – заместитель руководителя – начальник отдела водных ресурсов по Самарской области Нижне-Волжского бассейнового водного управления; Беляева Е.Ю. – заместитель директора ГБУ СО «Природоохранный центр»; Григорьев В.П. – руководитель Средневолжского территориального управления Федерального агентства по рыболовству; Губернаторов А.Е. – директор ФГУ Национальный парк «Самарская Лука»; Калиматов М.М. – руководитель Управления Федеральной службы по надзору в сфере природопользования (Росприроднадзор) по Самарской области; Краснобаев Ю.П. – директор ФГБУ «Жигулевский государственный природный биосферный заповедник им. И.И. Спрыгина»; Лебедев В.М. – руководитель департамента охоты и рыболовства Самарской области; Мингазов А.С. – врио начальника Федерального государственного бюджетного учреждения «Приволжское управление по гидromетеорологии и мониторингу окружающей среды»; Миронова О.А. – начальник отдела геологии и лицензирования по Самарской области Департамента по недропользованию по Приволжскому федеральному округу; Розенберг Г.С. – директор Института экологии Волжского бассейна РАН; Сергеева Н.М. – руководитель Управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор) по Самарской области; Спиридонов А.М. – главный врач ФБУЗ «Центр гигиены и эпидемиологии в Самарской области»; Студеников М.Н. – заместитель министра лесного хозяйства, охраны окружающей среды и природопользования Самарской области; Трусов В.А. – руководитель Управления Федеральной службы по ветеринарному и фитосанитарному надзору (Россельхознадзор) по Самарской области; Шаго М.В. – заместитель министра лесного хозяйства, охраны окружающей среды и природопользования Самарской области;

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области выражает признательность всем сотрудникам указанных учреждений и организаций, принимавшим участие в подготовке и анализе материалов Государственного доклада.
СОДЕРЖАНИЕ

ВВЕДЕНИЕ .. 7

Раздел 1. ОСНОВНЫЕ СВЕДЕНИЯ О САМАРСКОЙ ОБЛАСТИ ... 8

Раздел 2. КАЧЕСТВО ПРИРОДНОЙ СРЕДЫ И СОСТОЯНИЕ ПРИРОДНЫХ РЕСУРСОВ ... 12

2.1. Загрязнение атмосферного воздуха.. 12

2.1.1. Климатические особенности и обзор метеорологических условий загрязнения
воздуха .. 12

2.1.2. Качество атмосферного воздуха ... 14

2.1.2.1. Критерии санитарно-гигиенической оценки состояния атмосферного воздуха 14

2.1.2.2. Общая характеристика уровня загрязнения атмосферного воздуха на территории
области .. 16

2.1.2.3. Состояние загрязнения атмосферного воздуха в населенных пунктах 17

2.1.2.3.1. Состояние загрязнения атмосферного воздуха городского округа Самара 17

2.1.2.3.1.1. Обзор состояния загрязнения атмосферного воздуха по районам городского
округа Самара .. 20

2.1.2.3.2. Состояние загрязнения атмосферного воздуха городского округа Тольятти 24

2.1.2.3.3. Состояние загрязнения атмосферного воздуха городского округа
Новокуйбышевск .. 28

2.1.2.3.4. Состояние загрязнения атмосферного воздуха городского округа Чапаевск 30

2.1.2.3.5. Состояние загрязнения атмосферного воздуха городского округа Сызрань 33

2.1.2.3.6. Состояние загрязнения атмосферного воздуха городского округа Жигулевск ... 35

2.1.2.3.7. Состояние загрязнения атмосферного воздуха городского округа Отрадный 37

2.1.2.3.8. Состояние загрязнения атмосферного воздуха городского округа Поповщево ... 39

2.1.2.3.9. Состояние загрязнения атмосферного воздуха городского поселения Безенчук 41

2.1.2.3.10. Состояние загрязнения атмосферного воздуха на территории отдельных
муниципальных образований (по данным исследований) ... 43

2.1.2.4. Кислотность и химический состав атмосферных осадков 44

2.1.2.5. Загрязнение снежного покрова ... 45

2.1.2.5.1. Критерии оценки уровня загрязнения снежного покрова......................... 45

2.1.2.5.2. Состояние загрязнения снежного покрова .. 46

2.1.2.6. Состояние озонового слоя ... 47

2.1.2.7. Радиационная обстановка ... 48

2.1.2.7.1. Критерии радиационного состояния окружающей среды 48

2.1.2.7.2. Радиационная обстановка ... 48

2.2. Водные ресурсы ... 50

2.2.1. Поверхностные воды .. 50

2.2.1.1. Гидрометеорологические условия прохождения весеннего половодья на реках
и водохранилищах ... 50

2.2.1.2. Критерии загрязненности воды .. 51

2.2.1.3. Состояние загрязнения водных объектов ... 53
2.2.1.4. Содержание нефтепродуктов и хлорорганических пестицидов в донных отложениях водных объектов .. 69
2.2.1.5. Гидробиологическое состояние водных объектов 69
2.2.1.5.1. Критерии оценки водоёмов по гидробиологическим показателям 70
2.2.1.5.2. Гидробиологический мониторинг водохранилищ 71
2.2.1.5.3. Гидробиологический мониторинг рек .. 74
2.2.1.5.4. Родники .. 80
2.2.2. Подземные воды .. 82
2.2.2.1. Использование подземных вод .. 83
2.2.2.2. Режим подземных вод .. 86
2.2.2.3. Качество подземных вод .. 87
2.3. Почвы и земельные ресурсы .. 89
2.3.1. Общая характеристика почв ... 89
2.3.2. Структура земельного фонда ... 89
2.3.3. Качественное состояние земель .. 90
2.4. Недропользование и охрана недр ... 92
2.4.1. Углеводородное сырье ... 92
2.4.2. Неметаллические полезные ископаемые .. 93
2.4.3. Результаты мониторинга состояния и развития экзогенных геологических процессов ... 95

Раздел 3. СОСТОЯНИЕ РАСТИТЕЛЬНОГО И ЖИВОТНОГО МИРА. ОСОБО ОХРАНЯЕМЫЕ ПРИРОДНЫЕ ТЕРРИТОРИИ ... 98
3.1. Состояние растительного мира, в том числе лесного фонда 98
3.1.1. Состояние растительного мира .. 98
3.1.2. Состояние лесов .. 100
3.2. Животный мир, в том числе рыбные ресурсы .. 102
3.2.1. Характеристика животного мира .. 102
3.2.2. Состояние рыбных ресурсов ... 104
3.3. Особо охраняемые природные территории .. 105
3.3.1. Особо охраняемые природные территории федерального значения 106
3.3.2. Особо охраняемые природные территории регионального значения 115
3.3.3. Средне-Волжский комплексный биосферный резерват 123
3.3.4. Ботанический сад ... 124
3.4. Красная книга Самарской области ... 126

Раздел 4. ПРИРОДОПОЛЬЗОВАНИЕ И ВЛИЯНИЕ ОСНОВНЫХ ВИДОВ ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ НА СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ... 128
4.1. Воздействие на водные объекты ... 128
4.1.1. Водопотребление .. 130
4.1.2. Водоотведение .. 132
4.1.3. Основные мероприятия по рационализации водопользования и охране водных объектов .. 137
4.2. Воздействие на атмосферный воздух .. 137
4.3. Отходы производства и потребления .. 141
4.4. Загрязнение почв ... 145
 4.4.1. Критерии степени загрязнения почв ... 145
 4.4.2. Загрязнение почв в процессе осуществления сельскохозяйственной деятельности ... 146
 4.4.3. Загрязнение почв токсикантами промышленного происхождения ... 151
 4.4.3.1. Загрязнение почв тяжелыми металлами 151
 4.4.3.2. Загрязнение почв нефтепродуктами ... 153
 4.4.3.3. Загрязнение почв фтором, нитратами и сульфатами 154
 4.4.3.4. Снятие и использование плодородного слоя почвы 156
4.5. Пользование лесом ... 156
4.6. Пользование объектами животного мира, в том числе использование водных биоресурсов ... 166

Раздел 5. ПРИРОДОПОЛЬЗОВАНИЕ И ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ НА ТЕРРИТОРИИ ОТДЕЛЬНЫХ МУНИЦИПАЛЬНЫХ ОБРАЗОВАНИЙ 184
 5.1. Городские округа ... 184
 5.2. Муниципальные районы ... 192
 5.3. Удельные показатели воздействия на окружающую среду 214

Раздел 6. ВЛИЯНИЕ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ СРЕДЫ ОБИТАНИЯ НА ЗДОРОВЬЕ НАСЕЛЕНИЯ ... 217
 6.1. Санитарно-гигиеническая характеристика среды обитания 217
 6.2. Медико-демографические показатели здоровья населения 236

Раздел 7. ГОСУДАРСТВЕННАЯ ЭКОЛОГИЧЕСКАЯ ПОЛИТИКА, РЕГУЛИРОВАНИЕ И НАДЗОР В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ .. 241
 7.1. Структура государственного регулирования и надзора в сфере природопользования и охраны окружающей среды 241
 7.2. Совершенствование нормативной правовой базы Самарской области в сфере лесного хозяйства, охраны окружающей среды и природопользования ... 243
 7.3. Реализация государственных программ Самарской области в сфере лесного хозяйства, охраны окружающей среды и природопользования... 244
 7.4. Плата за негативное воздействие на окружающую среду 247
 7.5. Государственная экологическая экспертиза 248
 7.6. Государственный экологический надзор ... 248
 7.7. Государственная политика в сфере сохранения биоразнообразия и развития сети особо охраняемых природных территорий Самарской области ... 251
 7.8. Государственное регулирование и надзор в сфере недропользования и охраны недр .. 252
 7.9. Государственное регулирование и надзор в сфере использования и охраны водных объектов ... 255
 7.10. Государственное регулирование и надзор в сфере охраны атмосферного воздуха ... 259
 7.11. Государственное регулирование и надзор в области обращения с отходами ... 260
 7.12. Государственный земельный надзор ... 261
7.13. Государственный надзор в области рыболовства и сохранения водных биологических ресурсов ... 262
7.14. Государственное регулирование лесопользования и надзор за состоянием, использованием, охраной, защитой лесного фонда и воспроизводства лесов 263

Раздел 8. НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ В ОБЛАСТИ ЛЕСНОГО ХОЗЯЙСТВА, ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДОПОЛЬЗОВАНИЯ 266

8.1. Фундаментальные исследования Института экологии Волжского бассейна РАН 266
8.2. Научно-исследовательские разработки Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет) ... 269
8.3. Научно-исследовательские разработки Самарского государственного технического университета ... 273
8.4. Научно-исследовательские разработки Самарского государственного социально-педагогического университета ... 274
8.5. Научно-исследовательская деятельность на базе ФГБУ «Жигулевский государственный природный биосферный заповедник» ... 276

Раздел 9. ЭКОЛОГИЧЕСКОЕ ОБРАЗОВАНИЕ, ПРОСВЕЩЕНИЕ И ВОСПИТАНИЕ, ВОВЛЕЧЕНИЕ НАСЕЛЕНИЯ В ОБЩЕСТВЕННОЕ ЭКОЛОГИЧЕСКОЕ ДВИЖЕНИЕ 279

9.1. Эколого-просветительские мероприятия регионального уровня .. 279
9.2. Система экологического образования и просвещения в вузах Самарской области 282
9.3. Экологическое просвещение и воспитание на базе ООПТ, расположенных на территории Самарской области ... 287

ЗАКЛЮЧЕНИЕ.. 290
ВВЕДЕНИЕ

Настоящее официальное издание «Государственный доклад о состоянии окружающей среды и природных ресурсов Самарской области за 2015 год» (далее – Доклад) представляет документированный систематизированный свод фактических данных и аналитических материалов, характеризующих состояние окружающей среды и её компонентов, естественных экологических систем на территории региона; информация о происходящих в них процессах и явлениях; воздействии на природную среду антропогенной деятельности; анализ состояния запасов и использования природных ресурсов области. Доклад информирует о проводимой в области государственной экологической политике, о принятых в 2015 году мерах по охране окружающей среды и рациональному использованию природных ресурсов. Он содержит основные показатели фактического состояния окружающей среды; сведения о природных и антропогенных факторах, влияющих на состояние окружающей среды; степени антропогенного воздействия на отдельные системы и компоненты природной среды; сведения об осуществляемых экономических, правовых, социальных и иных мерах в области охраны окружающей среды; информацию об осуществленных в регионе научных исследованиях в сфере охраны окружающей среды; оценку достижения целевых показателей качества окружающей среды, предусмотренных программными документами РФ.

Сведения и информация Доклада основаны на официальных материалах территориальных федеральных и региональных органов исполнительной власти, осуществляющих деятельность в сфере природопользования и охраны окружающей среды, государственной статистики, обеспечения прав потребителей, а также на разработках и данных научно-исследовательских и высших учебных заведений, общественных экологических организаций. Данные для раздела 5 «Природопользование и воздействие на окружающую среду на территории отдельных муниципальных образований Самарской области» предоставлены также администрациями соответствующих городских округов и муниципальных районов. Материалы Доклада в максимально возможной степени структурированы в соответствии с административным делением области, что предоставляет дополнительные возможности в использовании его данных при анализе ситуации и принятии управленческих и хозяйственных решений на муниципальном уровне. Наличие уже традиционных для этого документа разделов и сведений, общая преемственность в изложении материалов позволяют получать информацию не только по результатам 2015 года, но также и о динамике, тенденциях развития освещаемых процессов за ряд лет. Вместе с тем, структура Доклада в возможной степени приближена к содержанию и структуре Государственного доклада «О состоянии и об охране окружающей среды Российской Федерации в 2014 году».

Доклад подготовлен по заданию министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области во исполнение поручения Президента Российской Федерации № Пр-1685 от 12 июня 2011 года в целях обеспечения реализации прав граждан на достоверную информацию о состоянии окружающей среды и информационного обеспечения социально-экономической деятельности. Он является официальным документом, обеспечивающим органы государственного управления, муниципальные органы власти, предприятия и организации, средства массовой информации, население объективной исчерпывающей информацией в сфере природопользования и охраны окружающей среды. Доклад служит основой для формирования и проведения государственной политики в области экологической безопасности региона, определения приоритетных направлений деятельности органов государственной власти в этой сфере, а также разработки мер, направленных на предупреждение и сокращение негативного воздействия на окружающую среду.
Раздел 1. ОСНОВНЫЕ СВЕДЕНИЯ О САМАРСКОЙ ОБЛАСТИ

Самарская область расположена по среднему течению р. Волги, в районе излучины, которая известна под названием Самарская Лука. Характерными особенностями климата являются: континентальность, преобладание в холодное время года пасмурных дней, летом — малооблачных и ясных дней, теплая и малоснежная зима с отдельными холодными периодами, короткая весна, жаркое сухое лето, непродолжительная осень. В холодную часть года преобладают ветра юго-западного и южного, в теплу — северного, западного и северо-западного направлений. Область расположена на границе лесостепной и степной природно-климатических зон — в северной ее части произрастают хвойные и широколиственные леса, а юг и восток занимают преимущественно степные территории.

Средняя температура января — минус 13,9 градуса, средняя температура июля — плюс 20,1 градуса. Среднегодовое количество осадков (1971-2000 годы) по территории области составляет примерно 494 мм при снижении количества осадков в направлении с севера на юг области. Близость азиатских полупустынь в большей степени сказывается на климате южных районов области, где наблюдаются периодические засухи. Это же обстоятельство делает значительную часть территории зоной рискованного земледелия.

Крупнейшим горным массивом и одновременно одним из красивейших мест России являются заповедные Жигулевские горы (высотой 381 м над уровнем моря — высшая точка области), расположенные непосредственно в излучине Самарской Луки. Помимо главной водной артерии региона — реки Волги (которая в пределах региона представлена акваториями Куйбышевского и Саратовского водохранилищ) — на территории области имеется более 200 рек и местных водотоков общей протяженностью 6,74 тыс. км, около 100 озер, 23 малых водохранилищ и более 100 прудов общей площадью около 14 тыс. га.

Река Волга и её приток Самара делят область на части: Правобережье, Северное и Южное левобережье. Высокое Правобережье расположено на восточных отрогах Приволжской возвышенности, пересечено оврагами и балками. Северное левобережье представлено плоской равниной низкого Заволжья и юго-западной частью Бугульминско-Белебеевской возвышенности (Сокольи горы, Сокске и Кинельские яры) с абсолютными отметками, превышающими 300 м. Южное левобережье занято пологоволнистой равниной, юго-восточную часть которой занимают отроги возвышенности Общий Сырт (Синий, Средний, Каменные Сырты с абсолютными отметками, превышающими 200 м).

Область располагает значительными запасами полезных ископаемых и входит в число основных нефтедобывающих и нефтеперерабатывающих регионов страны. Удельный вес Самарской области в запасах и добыче нефти на сушу России составляет около 1,5% и 3,0% соответственно. К иным, имеющим большую экономическую ценность, видам основных полезных ископаемых области относятся подземные воды питьевого качества и минеральные воды, пески, глины, гипс строительный, карбонатные породы, самородная сера, каменная соль, битумы и битумсодержащие породы, горючий сланец. С вводом в эксплуатацию в 1957 году Волжской ГЭС важнейшим гидроэнергетическим ресурсом стали водные ресурсы крупнейшего в Европе Куйбышевского водохранилища.

Несмотря на выраженный индустриальный характер области и высокую степень хозяйственной освоенности её территории, здесь сохранились непосредственно не затронутые антропогенной деятельностью уголки природной среды, образцы
первозданной флоры и фауны. Ключевая роль в этом принадлежит особо охраняемым природным территориям, в первую очередь, Жигулевскому государственному природному биосферному заповеднику им. И.И. Спрыгина, национальным паркам «Самарская Лука» и «Бузулукский бор», особо ценным лесным массивам Муранскому, Красносамарскому, Рачейскому борам и др. В области водятся лоси, олени, кабаны, косули, волки, зайцы, лисы, барсуки и другие животные, сотни видов птиц и рыб, тысячи видов насекомых, произрастают уникальные растения.

Административно Самарская область делится на 10 городских округов (Самара – областной центр, Тольятти, Сызрань, Новокуйбышевск, Чапаевск, Отрадный, Жигулевск, Октябрьск, Кинель, Похвистнево) и 27 муниципальных районов (Алексеевский, Безенчукский, Богатовский, Большеглушицкий, Большечерняевский, Борский, Волжский, Елховский, Исаклинский, Камышлинский, Кинельский, Кинель-Черкасский, Клявлинский, Кошкинский, Красногвардейский, Красноярский, Нефтегорский, Пестролюбовский, Похвистневский, Приволжский, Сергievский, Ставропольский, Сызранский, Хворостянский, Челно-Вершинский, Шенталинский, Шигонский).

Численность постоянного населения на 1 января 2016 года составила 3205,975 тысяч человек, что составляет около 2,2% населения России и 10,8% населения Приволжского федерального округа (ПФО). По численности населения область занимает 13 место среди регионов России и 4 место в округе. Средняя плотность населения – почти 60 человек на 1 км², что примерно в 2 раза выше среднего значения в ПФО. Самарская область на протяжении ряда лет стабильно является миграционно привлекательным регионом России (ежегодно 1-2 места по ПФО).

Административное деление Самарской области
Примерно 58,7% жителей области сосредоточено в крупнейших городах – Самара (36,5%) и Тольятти (22,2%), являющихся центрами уникальной двуядерной Самаро-Тольяттинской агломерации, на территории которой проживает свыше 80% населения региона. Доля сельского населения составляет около 20% общей численности населения области. Наибольшую численность населения имеют Волжский, Красноярский и Сергиевский муниципальные районы.

Самарская область – один из ведущих российских промышленных регионов, характеризующийся многообразием отраслей промышленности. Наибольшее развитие получили такие отрасли промышленности, как машиностроение (главным образом автомобилестроение и авиационно-космическое) и металлообработка, топливная, электроэнергетическая, химическая и нефтехимическая, цветная металлургия. Регион обладает развитым сельским хозяйством, основу которого составляет растениеводство с преобладающим производством пшеницы, ржи, подсолнечника, ячменя, проса, гречихи и других культур. Область располагает значительным научно-техническим и технологическим потенциалом, чему во многом способствует многоотраслевая структура экономики, большое сосредоточение предприятий машиностроительного профиля, а также тесное сотрудничество самарских ученых с научными центрами Москвы и Поволжья. В регионе работают 20 научных организаций федеральных министерств и ведомств (включая 8 организаций Российской академии наук и отраслевых академий), 10 отраслевых НИИ, 6 конструкторских организаций, 18 государственных, региональных и муниципальных учреждений высшего профессионального образования, 13 негосударственных учреждений ВПО, ряд других научно-исследовательских, проектных и проектно-изыскательских организаций.

Развитие Самарской области в 2015 году происходило в условиях продолжающегося действия неблагоприятных макроэкономических факторов, на что решающее влияние оказало сохранение санкционного режима между Россией и странами Европейского Союза и США. В результате развитие региона в прошлом году несколько замедлилось.

По оценке министерства экономического развития, инвестиций и торговли Самарской области, в 2015 году объем валового регионального продукта в номинальном выражении увеличился на 7,6% и составил 1,22 трлн. рублей. Однако в сопоставимых ценах показатель снизился на 3,2% (в целом по Российской Федерации – снижение ВВП на 3,7%). Основное влияние на сокращение произведенного ВРП оказалось снижение в торговой сфере, обрабатывающих производствах, сельском хозяйстве, строительстве.

Индекс промышленного производства в Самарской области составил 99,2% к уровню 2014 года (по России – 96,6%). Основное влияние на замедление темпов развития оказало снижение производства в обрабатывающем секторе (95,7% к 2014 году), в том числе в производстве автомобилей, прицепов и полуприцепов (84,3%). Без учета автомобилестроения индекс промышленного производства составил 101,8%.

Снижение производства в ряде обрабатывающих производств компенсируется наращиванием производства в других видах деятельности, в первую очередь, в отраслях, где предприятиями обеспечивается успешная реализация государственных заказов, а также в отраслях с высоким уровнем инвестиционной активности в предыдущие годы. Так прирост производства произошел в химической промышленности (на 9,4% к уровню предыдущего года), авиационно-космической промышленности (на 20,9%), производстве резиновых и пластмассовых изделий (на 0,2%) и добыче полезных ископаемых (на 5,4%).

Объем отгруженной промышленной продукции превысил 1,2 трлн. рублей (106,9% к уровню 2014 года). По среднемесячному объему промышленного производства Самарская область сохранила 3 место среди регионов Приволжского федерального округа.

Объем отгруженной продукции увеличился в добыче полезных ископаемых (120,1%), энергетическом секторе (100,4%) и обрабатывающих производствах (104,5%), в
том числе в химическом производстве (112,9%), производстве пищевых продуктов (114,5%), металлургии и производстве металлических изделий (113,4%), производстве электрооборудования (110%), производстве судов летательных и космических аппаратов (125,7%), производстве резиновых и пластмассовых изделий (106,3%), производстве нефteproductов (102,7%), целлюлозно-бумажном производстве (104,6%).

В 2015 году в регионе сложилась позитивная динамика процессов естественного воспроизводства населения. Продолжился рост рождаемости: родилось почти 41 тыс. детей, что на 1,6% больше относительно 2014 года, тогда как в целом по России и по Приволжскому федеральному округу количество родившихся сократилось. Общий коэффициент рождаемости составил 12,8 промилле против 12,6 промилле в 2014 году.

Несколько снизилась смертность граждан: умерло на 0,5% меньше по сравнению с предшествующим годом, общий коэффициент смертности составил 14,2 промилле (в 2014 году – 14,3 промилле). Уровень младенческой смертности в области сохраняется относительно низким: в 2015 году он составил 5,6 умерших в возрасте до года на тысячу родившихся (на 12,5% меньше 2014 года), что меньше показателя по РФ (6,5) и Приволжскому федеральному округу (6,1).

В результате естественная убыль населения сократилась с 1,7 промилле в 2014 году до 1,4 промилле в прошлом году. При этом естественный прирост населения отмечен в муниципальном районе Большечерниговский и городском округе Тольятти.

В прошлом году в области сложилось отрицательное сальдо миграции (-2,1 тыс. человек), в то время как в 2014 году миграционный прирост населения составил более 7 тыс. человек. Ухудшение миграционной обстановки связано с увеличением выбытия граждан в столичные регионы страны и в иные крупные регионы России, а также с сокращением положительного сальдо миграции в обмене населением со странами СНГ (до +943 человек против +7,9 тыс. человек соответственно) преимущественно за счет отрицательного обмена населением с Узбекистаном и Таджикистаном. Наиболее неблагоприятная миграционная обстановка отмечена в городском округе Тольятти: миграционная убыль выросла до -8,2 тыс. человек.

В результате не удалось сохранить тенденцию роста численности населения, которая наблюдалась в 2014 году: по оценке, численность населения на начало 2016 года составила 3 206 тыс. человек – на 6,8 тыс. человек или на 0,2% меньше относительно начала прошлого года.

Ситуация в сфере занятости населения и на рынке труда Самарской области несколько ухудшилась, но в целом сохраняется управляемой.

За 2015 год среднесписочная численность работников организаций, занятых в экономике Самарской области, сократилась по сравнению с 2014 годом на 1,5% и составила 1 088,8 тыс. человек.

В Самарской области уровни занятости (68,5%) и общей безработицы (3,3%), рассчитанные по методологии МОТ, по итогам обследования по проблемам занятости населения в среднем за IV квартал 2015 года сложились лучше среднероссийских (65,3% и 5,7% соответственно) и среднеокружных (65,5% и 4,7%) значений.

Темпы инфляции в Самарской области в 2015 году (112,7% к декабрю предыдущего года) были несколько ниже среднероссийских значений, хотя превысили уровень предыдущего года.

Достаточно высокий уровень инфляции обусловил снижение основных показателей уровня жизни населения в реальном выражении, а также их покупательной способности. Величина среднемесячной номинальной начисленной заработной платы в регионе за 2015 год сложилась в размере 27 234 рублей (105,1% к 2014 году). Реальная заработная плата сократилась по сравнению с предыдущим годом на 8,9%. Среднедушевые денежные доходы (26,8 тыс. рублей) в номинальном выражении увеличились на 2,9%, в реальном – снизились на 10,9%.
Раздел 2.

КАЧЕСТВО ПРИРОДНОЙ СРЕДЫ И СОСТОЯНИЕ ПРИРОДНЫХ РЕСУРСОВ

2.1. Загрязнение атмосферного воздуха

2.1.1. Климатические особенности и обзор метеорологических условий загрязнения воздуха

Характерными особенностями климата являются: континентальность, преобладание в холодное время года пасмурных дней, летом — малооблачных и ясных дней, теплая и малоснежная зима с отдельными холодными периодами, короткая весна, жаркое сухое лето, непродолжительная осень. В холодную часть года преобладают ветра юго-западного и южного, в теплую — северного, западного и северо-западного направлений. Средняя по области температура воздуха за 2015 год составила +6,2˚C и оказалась на 1,5˚ выше многолетних значений. Осадков выпало больше нормы на 43 мм. Абсолютные значения максимальной температуры воздуха в летний период были в пределах +36,6...+39,2˚C. Самое низкое значение минимальной температуры воздуха отмечалось в январе (-33,5˚C).

В первой половине января установившийся в средней тропосфере западно-восточный перенос воздушных масс способствовал перемещению серии атлантических циклонов по северу европейской территории России. На погоду Самарской области оказывали влияние их фронтальные разделы. Отмечались осадки преимущественно в виде снега, мокрого снега разной интенсивности — 0.0-5.0 мм, местами 6.0-10.0 мм за полусутки. Местами наблюдался туман при видимости 500 м и менее, в отдельных районах метель. Ветер, в основном, был юго-западным и северо-западным со скоростью 1-7 м/с, часто усиливался до 10-15 м/с. В дальнейшем до конца месяца погоду определяли антициклональные поля. В последней декаде наблюдалась аномально холодная погода. В ночные и утренние часы образовывались инверсионные слои интенсивностью 1-5° на 100 м поднятия. Иногда местами наблюдался туман при видимости 200-500 м. В большинстве дней марта наблюдался антициклональный тип погоды. Лишь в первой декаде, при прохождении фронтальных разделов, отмечался снег разной интенсивности (0.0-4.0 мм, в отдельных районах 6.0-11.0 мм за полусутки). Местами наблюдались метели при усилии ветра до 10-21 м/с. Ветер преобладал юго-восточного и юго-западного направления со средней скоростью 0-5 м/с. В антициклонах ночью образовывались инверсионные слои интенсивностью 1-5° на 100 м поднятия. Иногда местами наблюдались туманы при видимости 200-500 м.

В марте наблюдается антициклональный тип погоды. Отмечалась преимущественно сухая погода. Лишь 10 марта при прохождении теплого фронта местами выпали небольшие осадки интенсивностью 0.0-1.0 мм за полусутки. Присутствие в ночные и утренние часы инверсионных слоев величиной 1-5° на 100 м поднятия вызывало повышение уровня загрязнения в атмосфере. В третьей декаде месяца преобладающий в средней тропосфере западно-восточный перенос способствовал чередованию фронтальных разделов атлантических циклонов и гребней антициклонов, перемещающихся из Европы. При прохождении фронтальных разделов в отдельных районах наблюдались осадки в виде снега и мокрого снега (0.0-3.0 мм за полусутки). Ветер был разных направлений со скоростью 0-5 м/с, 10, 13 и 16 марта усиливался до 10-15 м/с. Направление его менялось с юго-западного на северо-западное и северо-восточное.

В апреле наблюдалось преобладание циклонической деятельности: при прохождении фронтальных разделов выпадали осадки в виде мокрого снега и дождя (0.0-12.0 мм за полусутки). Направление ветра менялось с юго-восточного и юго-западного на северо-западное. Преобладающая скорость ветра 2-7 м/с, часто порывы его достигали 10-
18 м/с. В начале и в конце месяца территория области находилась под влиянием западной периферии антициклона. Существенных осадков не отмечалось. Ветер был юго-восточного направления. Ночью его скорость составляла 0-4 м/с, что при наличии приземной инверсии (1-4° на 100 м поднятия), способствовало накоплению вредных веществ. В дневные часы при образовании слоя термодинамического перемешивания (выше 500 м) и скорости приземного ветра до 2-7 м/с происходило рассеивание загрязняющих примесей.

В мае в первой и второй декадах погода была неустойчивой и определялась преимущественно циклоническими полями. Наблюдались дожди разной интенсивности (0.0-9.0 мм за полусутки), местами с грозами. Происходило «вымывание» загрязняющих веществ. Ветер менял направление с юго-восточного и юго-западного на северо-западное. Скорость ветра была 1-6 м/с, иногда его порывы достигали 10-15 м/с. В дневные часы при образовании слоя термодинамического перемешивания (выше 500 м) и скорости приземного ветра до 2-7 м/с происходило рассеивание загрязняющих примесей.

В третьей декаде мае формирование антициклонов и их периферии. В конце месяца с приближением фронтальных разделов с запада в отдельных районах выпадал дождь интенсивностью 0.0-5.0 мм за полусутки. Ветер был разных направлений с юго-восточного и юго-западного на северо-западное. Скорость ветра была 1-6 м/с, иногда его порывы достигали 10-15 м/с. Ночью скорость ветра составляла 0-4 м/с, что при наличии приземной инверсии (1-4° на 100 м поднятия) при слабом ветре (0-2 м/с) кратковременно повышало уровень загрязнения в атмосфере. В третьей декаде мая погоду формировали антициклоны и их периферии. В конце месяца с приближением фронтальных разделов с запада в отдельных районах выпадал дождь интенсивностью 0.0-5.0 мм за полусутки. Ветер был разных направлений со скоростью в дневные часы 1-6 м/с. В некоторые ночи при ослаблении скорости ветра до 0-3 м/с образовывался инверсионный слой интенсивностью 1-3° на 100 м поднятия. Такие метеоусловия способствовали накоплению загрязняющих веществ.

В большинстве дней июня погода характеризовалась восточными перифериями антициклонов, центры которых располагались над Западной Европой и центральными районами России, а также малоградиентным полем. Преобладала преимущественно сухая, а во второй половине месяца и аномально жаркая погода. При прохождении фронтальных разделов в отдельные дни отмечался локальный кратковременный дождь с грозой. Количество осадков за полусутки составило 0.0-9.0 мм за полусутки. Ветер был разных направлений. Ночью скорость ветра составляла 0-4 м/с, в дневные часы – 1-6 м/с, иногда порывы достигали 10-15 м/с. Частое присутствие вночные и утренние часы инверсий (интенсивностью 1-5° на 100 м поднятия) при слабом ветре и дефиците осадков приводило к накоплению загрязняющих веществ в приземном слое атмосферы. В дневные часы экологическая обстановка несколько улучшалась благодаря термодинамическому перемешиванию воздуха до высоты 500-1000 м над уровнем земли.

В июле преобладал в средней тропосфере западно-восточного переноса способствовало перемещению атлантических циклонов на Среднюю Волгу. Вследствие этого погода в Самарской области была преимущественно неустойчивой. Наблюдались кратковременные дожди разной интенсивности, грозы, в отдельных районах град. Количество осадков за полусутки составило 0.0-15.0 мм, местами 18.0-40.0 мм. Ветер чаще был юго-западным и северо-западным с преобладающей скоростью 1-6 м/с, местами с порывами 10-21 м/с. Кратковременные дожди, грозы, местами с порывами 10-21 м/с. В конце месяца (24-31 июля) осадки не отмечались. В ночные часы наблюдались приземные и приподнятые инверсии интенсивностью 1-5° на 100 м поднятия. Направление ветра менялось с северо-западного на юго-восточное. Скорость ветра днем составляла 2-4 м/с, ночью – 0-2 м/с. Метеоусловия способствовали накоплению вредных веществ у поверхности земли.

В первой и третьей декадах августа погода формировалася восточной периферией антициклонов и малоградиентным полем повышенного давления. В середине месяца она определялась фронтальными разделами атлантических циклонов, перемещавшихся с Кольского полуострова на Средний Урал. Отмечались кратковременные дожди с грозами. Ветер преобладал северо-западного направления со скоростью 1-6 м/с, в отдельные дни местами порывы его достигали 10-16 м/с. В антициклональном поле в дневные часы наблюдалось приземные и приподнятые инверсии интенсивностью 1-5° на 100 м поднятия при ослаблении ветра до 0-3 м/с. При таких метеоусловиях уровень загрязнения у поверхности земли кратковременно повышался.
В первую декаду сентября преобладающее влияние на погоду оказывали ложбины циклонов с фронтальными разделами. Местами выпадали дожди различной интенсивности (0.0-18.0 мм за полусутки). Ветер был северо-западного и юго-западного направления со скоростью 0-4 м/с, в дневные часы усиливался до 5-7 м/с, 7 сентября – до 10-13 м/с. В дальнейшем, и до конца месяца, преобладал антициклональный характер погоды. Осадки не отмечались. В основном наблюдался юго-западный и юго-восточный ветер со скоростью 0-4 м/с, иногда в дневные часы 5-6 м/с, 19 и 29 сентября 10-14 м/с. Ночью и утром образовывались приземные и приподнятые инersions интенсивностью 1-5° на 100 м поднятия. Такие метеоусловия способствовали накоплению вредных веществ в приземном слое атмосферы.

В октябре преобладал циклонический тип погоды. При перемещении фронтальных разделов и волновых образований с юго-запада и запада наблюдались осадки разной интенсивности в виде дождя и мокрого снега количеством 0.0-6.0 мм, местами 15.0 мм за полусутки. 25 октября местами отмечался гололёд. Ветер был чаще юго-западного и северо-западного направления со скоростью 2-7 м/с, местами его порывы достигали 10-17 м/с. В промежуточных антициклональных полях в ночное и утреннее время наблюдались приземные и приподнятые инersions интенсивностью 1-3° на 100 м поднятия. Такие метеоусловия кратковременно способствовали некоторому повышению уровня загрязнения.

Погода в ноябре была неустойчивой. Чаще ее определяли циклоны и их фронтальные разделы. Наблюдались осадки в виде снега, мокрого снега переходящего в дождь (1.0-15.0 мм за полусутки), в отдельных районах слабая метель. Местами отмечались туман, гололёд. Направление ветра было юго-восточным и юго-западным со скоростью 1-7 м/с, местами с порывами 10-21 м/с.

В декабре преобладание в средней тропосфере ведущего потока с запада способствовало быстрому чередованию барических образований у поверхности земли над ЕТР. Фронтальные разделы атлантических циклонов и волновые образования периодически сменялись распространением гребней антициклонов. Наблюдались осадки разной интенсивности (до 13.0 мм за полусутки) в виде снега, мокрого снега и дождя. Местами отмечались туман, слабый гололёд, слабая метель. Ветер менял направление от юго-восточного до северо-западного со скоростью 1-6 м/с, местами с порывами 10-15 м/с. В антициклональном поле в ночное время кратковременно наблюдались приземная и приподнятая инersions интенсивностью 1-3° на 100 м поднятия.

2.1.2. Качество атмосферного воздуха

2.1.2.1. Критерии санитарно-гигиенической оценки состояния атмосферного воздуха

Оценка уровня загрязнения атмосферы выражается через концентрацию примеси путем сравнения ее с гигиеническими нормативами.

Наиболее распространенными в настоящее время критериями оценки качества природных сред – атмосферного воздуха и вод суши - являются предельно допустимые концентрации (ПДК) вредных веществ в названных средах. Нормативы ПДК различных веществ, утверждаемые Минздравом России, едини для всего государства. В России установлены ПДК для более 600 различных атмосферных примесей (ГН 2.1.6.1338-03, а также изменения к ним, в том числе касающиеся концентраций формальдегида и фенола).

Предельно допустимая концентрация – это максимальная концентрация примеси в атмосферном воздухе, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека и его потомства не оказывает и не окажет прямого или косвенного влияния на него (включая отдаленные последствия) и на окружающую среду в целом. В связи с тем, что кратковременные воздействия не обнаружаются при запахе вредных веществ могут вызывать функциональные изменения в коре головного мозга и зрительном анализаторе, были
введены значения максимальных разовых ПДК. С учетом вероятности длительного воздействия вредных веществ на организм человека были введены значения средних суточных ПДК. Таким образом, установлены для каждого вещества два норматива:

- **максимально разовая** предельно допустимая концентрация (ПДКм.р.) - максимальная 20–30 минутная концентрация, при воздействии которой не возникают рефлекторные реакции у человека (задержка дыхания, раздражение слизистой оболочки глаз, верхних дыхательных путей и др.).

- **среднесуточная** предельно допустимая концентрация (ПДКс.с.) - средняя за сутки концентрация, при воздействии которой не развиваются общетоксические, мутагенные, канцерогенные эффекты при неограниченно длительном вдыхании.

Предельно допустимые концентрации веществ, определяемых в атмосферном воздухе г. Самары, приведены ниже в таблице. Во второй графе таблицы приведены классы опасности веществ:

1. - чрезвычайно опасные,
2. - высокоопасные,
3. - умеренно опасные,
4. - малоопасные.

Эти классы разработаны для условий непрерывного вдыхания веществ без изменения их концентраций во времени. В реальных условиях возможны значительные увеличения концентраций примесей, которые могут привести в короткий интервал времени к резкому ухудшению состояния человека.

Предельно допустимые концентрации (ПДК)
определяемых загрязняющих веществ

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Класс опасности</th>
<th>ПДК м.р.</th>
<th>ПДК ср.с.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пыль (взвешенные вещества)</td>
<td>3</td>
<td>0,5</td>
<td>0,15</td>
</tr>
<tr>
<td>диоксид серы</td>
<td>3</td>
<td>0,5</td>
<td>0,05</td>
</tr>
<tr>
<td>оксид углерода</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>диоксид азота</td>
<td>3</td>
<td>0,20</td>
<td>0,04</td>
</tr>
<tr>
<td>оксид азота</td>
<td>3</td>
<td>0,4</td>
<td>0,06</td>
</tr>
<tr>
<td>сероводород</td>
<td>2</td>
<td>0,008</td>
<td>-</td>
</tr>
<tr>
<td>фенол</td>
<td>2</td>
<td>0,01</td>
<td>0,006</td>
</tr>
<tr>
<td>сажа</td>
<td>3</td>
<td>0,15</td>
<td>0,05</td>
</tr>
<tr>
<td>фторид водорода</td>
<td>2</td>
<td>0,02</td>
<td>0,005</td>
</tr>
<tr>
<td>хлор</td>
<td>2</td>
<td>0,10</td>
<td>0,03</td>
</tr>
<tr>
<td>хлорид водорода</td>
<td>2</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>углеводороды*</td>
<td>4</td>
<td>5,0</td>
<td>1,5</td>
</tr>
<tr>
<td>аммиак</td>
<td>4</td>
<td>0,2</td>
<td>0,04</td>
</tr>
<tr>
<td>серная кислота</td>
<td>2</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>формальдегид</td>
<td>1</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>бензол</td>
<td>2</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>азотная кислота</td>
<td>2</td>
<td>0,4</td>
<td>0,15</td>
</tr>
<tr>
<td>ксилол</td>
<td>3</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>Тoluол</td>
<td>3</td>
<td>0,6</td>
<td>-</td>
</tr>
<tr>
<td>Этилбензол</td>
<td>3</td>
<td>0,02</td>
<td>-</td>
</tr>
<tr>
<td>Изопропилбензол</td>
<td>4</td>
<td>0,014</td>
<td>-</td>
</tr>
<tr>
<td>Нитробензол</td>
<td>2</td>
<td>0,008</td>
<td>-</td>
</tr>
<tr>
<td>Бенз(а)пирен</td>
<td>1</td>
<td>-</td>
<td>1*10^-6</td>
</tr>
</tbody>
</table>

условные ПДК
Под высоким загрязнением (ВЗ) атмосферного воздуха принимается содержание одного или нескольких веществ, превышающее максимальную разовую ПДК в 10 и более раз.

Под экстремально высоким загрязнением (ЭВЗ) атмосферного воздуха принимается содержание одного или нескольких веществ, превышающее максимальную разовую ПДК:

- в 20 – 29 раз при сохранении этого уровня более двух суток;
- в 30 – 49 раз при сохранении этого уровня от 8 часов и более;
- в 50 и более раз.

Степень загрязнения атмосферного воздуха оценивается посредством безразмерной величины, называемой индексом загрязнения атмосферы (ИЗА). В соответствии с существующими методами оценки уровень загрязнения считается:

- низким, если ИЗА ниже 5,
- повышенным при ИЗА от 5 до 6,
- высоким при ИЗА от 7 до 13,
- очень высоким при ИЗА не менее 14.

Кроме того, при определении степени загрязнения учитываются величины стандартного индекса (СИ) – наибольшей измеренной разовой концентрации загрязняющего вещества, деленной на ПДКм.р., а также наибольшей повторяемости (НП) превышения ПДКм.р. загрязняющим веществом в городе. При этом, если величины ИЗА, СИ и НП попадают в разные градации, то степень загрязнения атмосферного воздуха оценивается по ИЗА.

2.1.2.2. Общая характеристика уровня загрязнения атмосферного воздуха на территории области

Согласно Постановлениям Главного государственного санитарного врача РФ «О внесении изменений в ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест» изменены в сторону их увеличения санитарно-гигиенические нормативы концентраций формальдегида (постановление № 27 от 07.04.2014г.) и фенола (постановление № 3 от 12 января 2015г.). В связи с этим, несмотря на то, что воздух не стал чище, и реальных изменений в уровне загрязнения воздуха не произошло, отмечено резкое снижение значений характеристик и степени загрязнения, улучшение категории качества атмосферного воздуха.

На территории Самарской области наблюдения за состоянием загрязнения атмосферы проводились ФГБУ «Приволжское управление по гидрометеорологии и мониторингу окружающей среды» (ФГБУ «Приволжское УГМС») на 36 стационарных постах в 8 городских округах и поселениях – Бененчуке, Жигулевске, Новокуйбышевске, Похвистнево, Самаре, Сызрани, Тольятти, Чапаевске. Кроме того, при методическом руководстве ФГБУ «Приволжское УГМС» силами МКУ «Экология города Отрадного» ведутся наблюдения на одном посту в городе Отрадном. За год было отобрано и проанализировано порядка 205 тысяч проб атмосферного воздуха на содержание в них 32-х вредных веществ, как общих для воздушного бассейна всех городов, так и специфических для каждого конкретного города. По результатам наблюдений 2015 года случаев экстремально высокого (ЭВЗ – превышение ПДК в 50 раз) и высокого (ВЗ – превышение ПДК в 10 раз) загрязнения атмосферного воздуха отдельными примесями не зафиксировано.

Величины уровней загрязнения атмосферного воздуха в городских округах Самарской области приведены ниже.
Уровень загрязнения атмосферного воздуха в населенных пунктах Самарской области по категориям качества в 2015 году

<table>
<thead>
<tr>
<th>Величина</th>
<th>2015 г. (с учетом старых ПДК для формальдегида)</th>
<th>2015 г. (с учетом измененных ПДК для формальдегида)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самара</td>
<td>Высокий</td>
<td>Низкий</td>
</tr>
<tr>
<td>Тольятти</td>
<td>Повышенный</td>
<td>Низкий</td>
</tr>
<tr>
<td>Сызрань</td>
<td>Повышенный</td>
<td>Низкий</td>
</tr>
<tr>
<td>Новокуйбышевск</td>
<td>Повышенный</td>
<td>Низкий</td>
</tr>
<tr>
<td>Чапаевск</td>
<td>Низкий</td>
<td>Низкий</td>
</tr>
<tr>
<td>Отрадный</td>
<td>Высокий</td>
<td>Низкий</td>
</tr>
<tr>
<td>Похвистнево</td>
<td>Повышенный</td>
<td>Низкий</td>
</tr>
<tr>
<td>Жигулевск</td>
<td>Низкий</td>
<td>Низкий</td>
</tr>
<tr>
<td>Безенчук</td>
<td>Низкий</td>
<td>Низкий</td>
</tr>
</tbody>
</table>

По результатам наблюдений 2015 года состояние загрязнения атмосферного воздуха во всех городах Самарской области оценивалось по ИЗА как «низкое». Таким образом, с введением новых санитарно-гигиенических нормативов на формальдегид во всех городах отмечено улучшение качества атмосферного воздуха. В настоящее время на территории губернии нет городов с «повышенным», «высоким» и «очень высоким» уровнем загрязнения воздушной среды, однако в восьми городах (за исключением Похвистнево) максимально разовые концентрации одного или нескольких загрязняющих веществ превышают уровень 1 ПДК, что составляет 89% от всех городов области, где проводятся наблюдения.

2.1.2.3. Состояние загрязнения атмосферного воздуха в населенных пунктах

2.1.2.3.1. Состояние загрязнения атмосферного воздуха городского округа Самара

Городской округ Самара – крупнейший промышленный центр Среднего Поволжья, административно-территориальный и культурный центр, речной порт, крупный узел шоссейных и железнодорожных линий.

Основными источниками загрязнения атмосферы являются предприятия строительной, топливо-энергетической, нефтеперерабатывающей, металлургической, авиа-приборостроительной отраслей промышленности, а также автомобильный и железнодорожный транспорт. Предприятия расположены на всей территории города, однако наибольшая их часть сосредоточена в районе так называемой Безымянской промзоны, расположенной в СВ-ЮВ части областного центра.

Наблюдения за загрязнением атмосферного воздуха проводятся на пятнадцати стационарных постах. Посты располагаются по следующим адресам (картограмма 2.1.2.3.1.1):

- ПНЗ 1 – улица Ново-Садовая, 325,
- ПНЗ 2 – пересечение улицы Гагарина и Московского шоссе,
- ПНЗ 3 – пересечение улиц Гагарина и Промышленности,
- ПНЗ 4 – площадь Урицкого,
- ПНЗ 6 – пересечение улиц Полевой и Молодогвардейской,
- ПНЗ 7 – пересечение улицы Советской Армии и Московского шоссе,
- ПНЗ 8 – пос. 116 км, пересечение улиц 40-лет Пионерии и Строителей,
- ПНЗ 9 – городок Авиаторов, улица Железной дивизии, 9,
- ПНЗ 10 – Хлебная площадь,
- ПНЗ 11 – пересечение улицы Победы и Зубчаниновского шоссе,
Картограмма 2.1.2.3.1.1

Структура и уровень концентрации загрязняющих веществ (в единицах ПДК) по ПЛЗ г. Самара в 2015 г.

Условные обозначения:

- пункт наблюдения за атмосферой (ПЛЗ), его номер;

ПНЗ 1 - ул. Менделеева, 32, Промышленный район
ПНЗ 2 - пересечение улиц Гагарина и Московской, Октябрьский район
ПНЗ 3 - пересечение улиц Гагарина и Пионерская, Советский район
ПНЗ 4 - площадь Андропова, Железнодорожный район
ПНЗ 5 - пересечение улиц Советской Армии и Московской, Октябрьский район
ПНЗ 6 - пересечение улиц Советской Армии и Московской, Советский район
ПНЗ 7 - п. Красноглинка, улица Ленина, 10, Красноармейский район
ПНЗ 8 - улица Новосильская, 8, Советский район
ПНЗ 9 - улица Новосильская, 8, Советский район
ПНЗ 10 - город Саратов, улица Ленина, 10, Красноармейский район
ПНЗ 12 — поселок Мехзавод 2-й квартал,
ПНЗ 13 — поселок Красная Глинка, улица Батайская,
ПНЗ 15 — улица Партизанская, 166,
ПНЗ 17 — улица Г. Димитрова, 115,
ПНЗ 18 — поселок Зубчаниновка, ул. Александра Невского, 95.
В атмосферном воздухе областного центра проводится определение 26 вредных примесей, включая 9 металлов. За год выполнено 68,6 тыс. определений. По данным ФГБУ «Приволжское УГМС” состояние загрязнения атмосферы г.о.Самара в целом характеризовалось следующим образом.

Концентрации основных примесей

Диоксид серы. Содержание вещества ниже российских стандартов — на уровне 0,1 ПДК. Максимально разовая концентрация также невысока и составила 0,2 ПДК.

Диоксид и оксид азота. Среднегодовая концентрация диоксида азота в целом по городу составила 0,9 ПДК. В несколько большей степени загрязнена данной примесь атмосфер в районах, расположенных вблизи автомагистралей с интенсивным движением автотранспорта (ПНЗ 7, 11, 12). Здесь среднегодовые концентрации вещества составили 1,3-1,5 ПДК. В годовом ходе среднемесячных концентраций (в целом по городу) отмечены колебания от 0,7 до 1,1 ПДК. Максимальные разовые концентрации на уровне 0,9 ПДК зафиксированы на ПНЗ 9,11,12.

Содержание в атмосфере города оксида азота на протяжении года находилось на отметке 0,2-0,4 ПДК. Максимально разовая концентрация примеси также была невысока – 0,2 ПДК.

Взвешенные вещества. Запыленность города низкая на уровне 0,1 ПДК. Максимальная разовая концентрация пыли 0,6 ПДК зафиксирована в июле на ПНЗ 3.

Оксид углерода. Среднегодовая концентрация примеси на уровне 0,4 ПДК. Максимально разовая концентрация 1,6 ПДК фиксировалась неоднократно на ПНЗ 2,4,6,8,9,11.

Бенз(а)пирен определялся на трех постах. Средняя концентрация вещества на уровне 0,4 ПДК. Наибольшая среднемесячная концентрация примеси наблюдалась на ПНЗ 8 в январе – 2,1 ПДК.

Концентрации специфических примесей

Формальдегид. Определение осуществлялось на тринадцати постах. Загрязнение атмосферы в целом по городу на уровне 0,014 мг/м³, что составляет 1,4 ПДК. Наиболее высокие среднемесячные концентрации примеси отмечены на всех постах в жаркие месяцы (июнь-август). Максимальные из них на уровне 4,4-4,7 ПДК (14,7-15,7 ПДК по старым критериям) отмечены в июне на ПНЗ 8 и в июле на ПНЗ 4. Максимальная из разовых концентраций формальдегида, величина которой составила 2,7 ПДК, была зафиксирована в июле на ПНЗ 4.

Аммиак. В целом по городу среднегодовая концентрация находилась на уровне 1,1 ПДК. В течение года величины среднемесячных концентраций примеси изменялись в пределах 0,6-1,7 ПДК. Максимальная разовая концентрация 0,7 ПДК отмечалась неоднократно на ПНЗ 9 и 18.

Фторид водорода. Среднегодовая и максимальная из разовых концентраций были невелики и находились на уровне 0,4.

Фенол. Определение примеси проводилось на шести постах. Среднегодовая концентрация на уровне 0,3 ПДК (0,7 ПДК по старым ПДК). Максимальная разовая концентрация фенола составила 0,9 ПДК; она отмечалась неоднократно на ПНЗ 8,5,17.

Сероводород. Среднегодовые и все среднемесячные концентрации на постах находились на отметке 0,001-0,002 мг/куб.м. Максимальная разовая концентрация примеси 2,5 ПДК регистрировалась в феврале и июне на ПНЗ 8.
Хлорид водорода. Содержание примеси невысоко – на уровне 0,3 ПДК. Максимальная разовая концентрация 0,7 ПДК отмечена в октябре на ПНЗ 11.

Среднегодовые концентрации примесей, вносящих наибольший вклад в загрязнение атмосферы г.о. Самара в 2015 году

Углеводороды (суммарно С1–С10). Среднегодовые концентрации на постах составили 1,2–1,6 мг/куб.м; максимально разовая концентрация 3,6 мг/куб.м была зафиксирована в июне на ПНЗ 7.

Ароматические углеводороды (bensol, ксилол, толуол, этилбензол). Средние за год концентрации составили: bensol – 0,2 ПДК, ксилола, толуола и этилбензола 0,0 мг/куб.м. Максимально разовые концентрации достигли уровней: по ксилолу – 5 ПДК, bensolu – 1,5 ПДК, толуолу – 1,3 ПДК, этилбензолу – 1 ПДК.

Тяжелые металлы (железо, кадмий, магний, марганец, медь, никель, свинец, цинк и хром). Содержание металлов в течение года значительно ниже ПДК.

Тенденция загрязнения атмосферы г.о. Самара в 2006-2015 годах

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень загрязнения</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>В</td>
<td>П</td>
<td>Н</td>
<td></td>
</tr>
</tbody>
</table>

По сравнению с 2014 годом загрязнение атмосферы снизилось, город переместился из градации с «повышенным» в градацию с «низким» загрязнением атмосферы.

2.1.2.3.1.1. Обзор состояния загрязнения атмосферного воздуха по районам городского округа Самара

В настоящее время степень загрязнения атмосферы районов города сколь-нибудь значительно не различается. Этот факт объясняется тем, что наибольший вклад в загрязнение воздушной среды вносят выбросы автотранспорта, вклад которого в суммарный выброс составляет более 70%.

В то же время для каждого административного района характерно наличие в атмосфере специфических именно для данной местности ингредиентов, хоть и в количествах, в основном не превышающих уровень ПДК.
Неблагополучную картину загрязнения атмосферного воздуха Кировского района формируют такие примеси как углеводороды, аммиак и формальдегид, среднегодовое содержание которых находилось на уровне 1-1,4 ПДК.

В атмосфере Железнодорожного района отмечается превышение гигиенических нормативов по формальдегиду в 1,4 раза; кроме того на уровне 1 ПДК регистрируется содержание диоксида азота.

Красноглинский район. Содержание примесей, поступающих в атмосферу с выбросами промышленных предприятий, практически не превышает гигиенических нормативов; основными загрязнителями же являются диоксид азота, углеводороды и формальдегид, присутствующие в выбросах автотранспорта. Их среднегодовые концентрации находились на уровне 0,7-1 ПДК.

Куйбышевский район. Специфическими для района веществами являются сероводород, различного состава углеводороды, фенол. Содержание данных ингредиентов на протяжении всего периода наблюдений было несколько выше среднегородского. В последние годы приоритетным в списке загрязняющих веществ района стал формальдегид. По результатам наблюдений превышение санитарных норм отмечено по одной примеси – формальдегиду – в 1,6 раза; на уровне 1 ПДК было содержание углеводородов.

Ленинский район. Как и во всех районах Самары, наиболее высоких значений достигло загрязнение атмосферы формальдегидом. Среднегодовая концентрация формальдегида, как и по городу в целом, превысила гигиенический норматив в 1,4 раза.

Октябрьский район. На территории района наиболее ярко выражено влияние выбросов автотранспорта: именно здесь расположены значительные отрезки двух крупных автомагистралей – Московского шоссе и улицы Ново-Садовой. Среднегодовые концентрации примесей, превышавшие санитарные нормы, составили: 1,4 ПДК по формальдегиду, 1,1 ПДК по диоксиду азота и углеводородам.

Промышленный район. Как и в целом по Самаре, наиболее высоко загрязнение воздушной среды аммиаком, углеводородами и формальдегидом, среднегодовые концентрации которых находились на отметке 1,1-1,3 ПДК.

Самарский район. В 2015 году в районе существенно снизились концентрации пыли, сероводорода и диоксида серы, но по-прежнему высоки – формальдегид (1,2 ПДК).

Советский район – это часть Безымянской промзоны. Несмотря на то, что вклад стационарных источников в загрязнение воздуха здесь более существенен, чем в центральных районах города, в настоящее время среднегодовые концентрации большинства определяемых примесей не превышали пределов гигиенических нормативов. Наиболее высоким на уровне 1-1,3 ПДК отмечено содержание углеводородов и формальдегида.

Пространственная структура загрязнения атмосферы г.о. Самара диоксидом азота и формальдегидом представлена на картограммах 2.1.2.3.1.2 и 2.1.2.3.1.3.
Картограмма 2.1.2.3.1.2

Пространственная структура загрязнения атмосферы диоксидом азота на территории г.о. Самара в 2015 г.

Расчетные поля распространения загрязнения атмосферы диоксидом азота в долях ПДК, ГДК = 0,04 мг/м³:

- 0,5 - 0,55
- 0,55 - 0,6
- 0,6 - 0,65
- 0,65 - 0,7
- 0,7 - 0,75
- 0,75 - 0,8
- 0,8 - 0,85
- 0,85 - 0,9
- 0,9 - 0,95
- 0,95 - 1
- 1 - 1,05
- 1,05 - 1,1
- 1,1 - 1,15
- 1,15 - 1,2
- 1,2 - 1,25
- 1,25 - 1,3
- 1,3 - 1,35
- 1,35 - 1,4
- 1,4 - 1,45
- 1,45 - 1,5

Условные обозначения:
- пункты наблюдения за загрязнением
- границы районов
- гидрографическая сеть
- дороги
КГр.1.3.2.2. Пространственная структура загрязнения атмосферы формальдегидом на территории г.о. Самара в 2015 г.

Расчетные поля распределения загрязнения атмосферы формальдегидом в долях ГДК. ГДК - 0,01 мг/м³:

Условные обозначения:
- пункты наблюдения за загрязнением (ПНЗ)
- границы районов
- гидрографическая сеть
- дороги

ФГБУ "Приволжское УГМС". Центр по мониторингу загрязнения окружающей среды. 2015 г.
2.1.2.3.2. Состояние загрязнения атмосферного воздуха городского округа Тольятти

Городской округ Тольятти – крупный промышленный центр Самарской области, гигант машиностроения. Основными источниками загрязнения атмосферы являются предприятия автомобильстроения, нефтехимии, по производству химических удобрений и стройматериалов, ТЭЦ и котельные, автомобильный, железнодорожный и речной транспорт. Предприятия расположены на всей территории города.

Наблюдения проводились на восьми стационарных постах, расположенных по адресам (картограмма 2.1.2.3.2.1):
- ПНЗ 2 – бульвар 50-лет Октября, у дома 65,
- ПНЗ 3 – улица Мира, восточнее д. 100,
- ПНЗ 4 – улица Ярославская, западнее д.10,
- ПНЗ 7 – улица Ботаническая, 12,
- ПНЗ 8 – проспект Степана Разина, восточнее д. 26,
- ПНЗ 9 – улица Карла Маркса, ООО «Буревестник»,
- ПНЗ 10 – село Тимофеевка, Южный проезд, 1Г,
- ПНЗ 11 – пос. Шлюзовой, ул.Шлюзовая, 8.

В атмосферном воздухе городского округа проводится определение 23 вредных примесей, включая 9 металлов. За год выполнено 51,1 тыс. определений. Состояние загрязнения атмосферы г.о. Тольятти в целом характеризовалось следующим образом.

Концентрации основных примесей
- Диоксид серы. Содержание примеси значительно ниже ПДК.
- Диоксид и оксид азота. В целом по городу среднегодовая концентрация диоксида азота составила 0,7 ПДК; в течение года величины среднемесячных концентраций изменялись на отдельных постах в пределах 0,2–1,6 ПДК. Максимальная из разовых концентраций, величина которой составила 2,4 ПДК, была отмечена на ПНЗ 2 в августе.
- Среднегодовая, а также максимальная разовая концентрации оксида азота были невелики – на уровне 0,2 ПДК и 0,3 ПДК соответственно.

Взвешенные вещества. Средняя концентрация пыли в целом по городу составила 0,6 ПДК. В течение года величины среднемесячных концентраций примеси изменялись в пределах 0,4–0,8 ПДК. Максимальная разовая концентрация ингредиента, величина которой достигла 1,2 ПДК, была зафиксирована на ПНЗ 7 и ПНЗ 10.
- Оксид углерода. Средняя концентрация примеси на уровне 0,4 ПДК. Все районы города загрязнены данной примесью практически одинаково. В годовом ходе концентраций в целом по городу наблюдаются колебания от 0,5-0,6 ПДК отмечен на всех постах в июне. Максимально разовая концентрация оксида углерода 1 ПДК фиксировалась неоднократно в течение года.

Бенз(а)пирен определялся на двух постах. Средняя концентрация составила 0,9 ПДК. Наиболее высокая концентрация 2,7 ПДК отмечена на ПНЗ 2.

Концентрации специфических примесей
- Формальдегид. Основные источники выбросов примеси – ОАО «АВТОВАЗ», ООО «Тольяттикаучук», ЗАО «Тольяттинтек», ООО «ВАЗинтерсервис» и автотранспорт. Определение проводилось на шести станциях. Среднегодовая концентрация в целом по городу на уровне 0,6 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 2 раза. В годовом ходе среднемесячных концентраций в целом по городу наблюдались колебания от 0,4 до 0,9 ПДК (1,3-3 ПДК по старым критериям). Максимальная из разовых концентраций примеси 2,1 ПДК (3,1 ПДК по старым критериям) была зафиксирована в ноябре на ПНЗ 4 при направлении ветра со стороны автомагистрали.
Картограмма 2.1.2.3.2.1

КГр. 1.3.3.1. Структура и уровень концентраций загрязняющих веществ (в единицах ГДК) по ПНЗ г.о. Тольятти и Жигулёвск в 2015 г.

Условные обозначения:
- пункт наблюдения за атмосферой (ПНЗ), его номер;

Тольятти:
ПНЗ 2 ул.30 лет Октября, 65;
ПНЗ 3 ул.Мира, 100;
ПНЗ 4 ул.Ярославская, 10;
ПНЗ 7 ул.Ботаническая, 12;
ПНЗ 8 проезд С. Разина, 26;
ПНЗ 9 ул. Карла Маркса, ОГТ "Муратовка";
ПНЗ10 село Тимофеевка, Юный проезд, 1Г;
ПНЗ11 ул. Шлюзовая, 8.

Жигулёвск:
ПНЗ 1 ул. Приволжская, 22.
Аммиак. Определение примеси проводилось на шести постах. Среднегодовая концентрация примеси в целом по городу составила 0,5 ПДК. В течение последних лет в большей степени загрязнен аммиаком атмосферный воздух в районе ПНЗ 2, попадающего в зону влияния выбросов одного из крупнейших предприятий по производству аммиака и азотных удобрений – ЗАО «Куйбышевазот». Здесь среднегодовая концентрация была на уровне 0,7 ПДК, наибольшие среднемесячные – 1,1-1,3 ПДК. Максимально разовая концентрация примеси достигла значения 2,1 ПДК, она регистрировалась в январе на ПНЗ 3 при НМУ.

Фторид водорода. Определение примеси проводилось на пяти постах. Основные источники выбросов – ОАО «Волгоцеммаш», ОАО «АвтоВАЗ». В целом по городу среднегодовая концентрация находилась на уровне 0,8 ПДК. В течение года величины среднемесячных концентраций на отдельных постах изменялись в пределах 0,4-2 ПДК; наибольшая из них отмечена в марте на ПНЗ 11. Максимально разовая концентрация примеси 2,2 ПДК зафиксирована на ПНЗ 8 в период штормовой погоды.

Углеводороды (суммарно С1-С10). Наиболее значительными промышленными источниками загрязнения атмосферы являются ООО «Тольяттикаучук», ЗАО «Тольяттисинтез», ОАО «Волгоцеммаш» и, конечно, автотранспорт. Среднегодовая концентрация – 1,6 мг/куб.м. Максимально разовая концентрация примеси 5,5 мг/куб.м фиксировалась в апреле на ПНЗ 2.

Ароматические углеводороды. Среднегодовые концентрации составили: по бензолу – 0,2 ПДК, по ксилолу, толуолу и этилбензолу – были практически на нулевой отметке. Максимальные из разовых концентраций достигали значений: 1,5 ПДК по этилбензолу, 1 ПДК – по ксилолу, по остальным примесям – 0,2-0,3 ПДК.

Тяжелые металлы (железо, кадмий, магний, марганец, медь, никель, свинец, цинк и хром). Среднее содержание большинства металлов в течение года было значительно ниже ПДК. Исключение составил свинец, содержание которого на ПНЗ 2 в марте поднималось до отметки 0,9 ПДК.

Помимо стационарных наблюдений, в связи с расследованием жалоб населения было произведено 9 выездов. В отобранных и проанализированных пробах атмосферного воздуха отмечен единичный случай превышения ПДК м.р. аммиаком.
По сравнению с 2014 годом загрязнение атмосферы снизилось, город переместился из градации с «повышенным» в градацию с «низким» загрязнением атмосферы.

Пространственная структура загрязнения атмосферы г.о.Тольятти диоксидом азота представлена на картограмме 2.1.2.3.2.2.

Картограмма 2.1.2.3.2.2
2.1.2.3.3. Состояние загрязнения атмосферного воздуха городского округа Новокуйбышевск

Городской округ Новокуйбышевск – центр нефтеперерабатывающей и нефтехимической промышленности, железнодорожный узел. Основными источниками загрязнения атмосферы являются предприятия нефтеперерабатывающей, нефтехимической и химической отраслей промышленности, топливной энергетики, ТЭЦ, автотранспорт. Большая часть промпредприятий, так называемый «Центр большой химии», расположен в западной части города.

Наблюдения проводятся на трех стационарных постах, расположенных по адресам (картограмма 2.1.2.3.3.1):
- ПНЗ 1 - улица Ворошилова, 2,
- ПНЗ 2 - улица Победы, 2,
- ПНЗ 4 - улица Кирова, 3.

В атмосферном воздухе городского округа проводится определение 24 вредных примесей, включая 9 металлов. За год выполнено 26,5 тыс. определений. Состояние загрязнения атмосферы г.о. Новокуйбышевск в целом характеризовалось следующим образом.

Концентрации основных примесей

Диоксид серы. Среднегодовая концентрация – 0,3 ПДК. В годовом ходе среднемесячных концентраций отмечались колебания от 0,1 до 0,5 ПДК. Максимальная разовая концентрация примеси была невысока – 0,3 ПДК.

Диоксид и оксид азота. Среднегодовая концентрация диоксида азота на уровне 0,6 ПДК. В целом по городу среднемесячные концентрации примеси изменялись в течение года в пределах 0,4-0,8 ПДК. Максимальная из разовых концентраций диоксида азота 1,7 ПДК была отмечена в мае на ПНЗ 4 при направлении ветра со стороны автотранспорт.

Среднегодовая концентрация оксида азота была невысока, величина ее составила 0,1 ПДК. Максимальная концентрация примеси составляла 0,2 ПДК.

Взвешенные вещества. Запыленность города на уровне 0,7 ПДК. В существенно большей степени на уровне 1 ПДК загрязнена атмосфера в районе ПНЗ 4. В годовом ходе среднемесячных концентраций в целом по городу отмечались колебания от 0,4 до 1,3 ПДК, на ПНЗ 4 – от 0,5 до 1,7 ПДК. Наибольшая разовая концентрация 1 ПДК отмечалась на ПНЗ 4 в июле и августе.

Оксид углерода. Среднегодовая концентрация невысока. Во все периоды года в целом по городу среднемесячные концентрации не превышали 0,2–0,5 ПДК. Максимально разовая концентрация достигла отметки 1,8 ПДК. Она отмечалась на ПНЗ 2 в мае и на ПНЗ 4 в ноябре при слабом ветре со стороны автомагистрали.

Бенз(а)пирен определялся на двух постах. Средняя концентрация примеси составила 0,3 ПДК. Наибольшая среднемесячная концентрация примеси 1 ПДК регистрировалась на ПНЗ 1 в январе.

Концентрации специфических примесей

Фormalдегид. Среднегодовая концентрация примеси составила 0,6 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превышала норму (как и в 2014 году) в 2 раза. В существенно большой степени загрязнен атмосферный воздух в районе ПНЗ 2, где содержание примеси находилось на уровне 0,8 ПДК (2,7 ПДК по старым критериям). В течение года на постах отмечены колебания величин среднемесячных концентраций от 0,3 до 1,4 ПДК (1,0-4,7 ПДК по старым критериям). Максимально разовая концентрация формальдегида 3,2 ПДК (4,6 ПДК по старым критериям) зафиксирована в октябре на ПНЗ 2 при направлении ветра со стороны предприятий нефтехимии и автомагистрали.
Фенол. Среднегодовая концентрация примеси в целом по городу находилась на отметке 0,3 ПДК (0,7 ПДК по старым критериям). В течение года величины среднемесячных концентраций изменялись на постах в пределах 0,2-0,7 ПДК. В декабре на ПНЗ 1 наблюдалась максимальная из разовых концентраций фенола – 2,3 ПДК.

Аммиак. Среднегодовая концентрация 0,4 ПДК. В течение года величины среднемесячных концентраций не превышали гигиенического норматива. В целом за год отмечено 67 случаев превышения уровня максимально разовой ПДК; наибольшая из разовых концентраций на уровне 3,3 ПДК зафиксирована на ПНЗ 4 в октябре.

Сероводород. Среднегодовая концентрация 0,001 мг/куб.м. В течение года среднемесячные концентрации сероводорода изменялись в пределах 0,001–0,002 мг/куб.м. Всего за год было зафиксировано 12 случаев превышения максимально разовой предельно допустимой концентрации. Наибольшее значение разовой концентрации примеси 3 ПДК наблюдалось на ПНЗ 4 в ноябре при направлении ветра со стороны АО «НК НПЗ».

Углеводороды. Средняя годовая концентрация 1,7 мг/куб.м. В годовом ходе среднемесячных концентраций на постах отмечались колебания 1,2–2,8 мг/куб.м. Максимальная концентрация 16,4 мг/куб.м была зафиксирована в августе на ПНЗ 2 при направлении ветра со АО «НК НПЗ».

Ароматические углеводороды (бензол, ксилол, толуол, этилбензол). Средние за год концентрации составили: бензола – 0,1 ПДК, ксилола, толуола и этилбензола – были практически на нулевой отметке. Максимально разовые концентрации достигли уровней: по этилбензолу 4 ПДК, ксилолу – 2 ПДК, бензолу и толуолу – 0,5 ПДК.
Тяжёлые металлы (железо, кадмий, магний, марганец, медь, никель, свинец, цинк и хром). На протяжении года содержание тяжёлых металлов было значительно ниже ПДК.

Помимо стационарных наблюдений, произведено 14 выездов в связи с расследованием жалоб населения. В отобранных пробах воздуха выполнено 361 измерение концентраций вредных примесей. Зафиксировано 35 случаев превышения ПДК.

По сравнению с 2014 годом загрязнение атмосферы не изменилось, город остался в градации с «низким» загрязнением атмосферы.

2.1.2.3.4. Состояние загрязнения атмосферного воздуха городского округа Чапаевск

Наблюдения проводятся на трех стационарных постах, расположенных по адресам (картограмма 2.1.2.3.4.1):
- ПНЗ 1 – улица Вокзальная, 14,
- ПНЗ 2 – пересечение улиц Рабочей и Ленина,
- ПНЗ 3 – пересечение улиц Ленина и Запорожской.

В атмосферном воздухе городского округа проводится определение 14 вредных примесей. В целом за год выполнено 12,05 тыс. определений. Состояние загрязнения атмосферы г.о. Чапаевск в целом характеризовалось следующим образом.

Картограмма 2.1.2.3.4.1
Концентрации основных примесей

Диоксид серы. Содержание примеси значительно ниже ПДК.

Диоксид и оксид азота. Определение диоксида азота проводится на всех постах. В целом по городу среднегодовая концентрация составила 0,9 ПДК. Наибольшие среднемесячные концентрации вещества 1,4-1,5 ПДК отмечены соответственно в марте и феврале. Именно в феврале на ПНЗ 1 зафиксирована максимальная из разовых концентраций диоксида азота, величина которой составила 1,3 ПДК. Источник загрязнения – выхлопы автотранспорта и выбросы предприятий.

Содержание в атмосфере города оксида азота на протяжении года находилось на отметке 0,1-0,2 ПДК. Максимально разовая концентрация примеси также была невысока – 0,1 ПДК.

Взвешенные вещества. Среднегодовая концентрация была невысока – 0,3 ПДК; наименьшие среднемесячные концентрации регистрировались с мая по сентябрь – 0,5-0,7 ПДК. Максимальная разовая концентрация примеси достигла уровня 1,6 ПДК, она регистрировалась в августе на ПНЗ 3.

Оксид углерода. Среднегодовая концентрация примеси на уровне 0,4 ПДК. Среднемесячные концентрации на постах в течение года находились в интервале 0,3-0,6 ПДК. Максимальная разовая концентрация примеси, величина которой составила 1 ПДК, была отмечена в апреле на ПНЗ 2. Причиной загрязнения явились выхлопы автотранспорта.

Бенз(а)пирен. Средняя концентрация примеси 0,5 ПДК. Наибольшая среднемесячная концентрация 2,4 ПДК регистрировалась на ПНЗ 3 в январе.

Концентрации специфических примесей
Формальдегид. Средняя концентрация примеси в целом по городу находилась на отметке 0,5 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 1,7 раза.

Ежегодно в несколько большей степени загрязнен атмосферный воздух в районе ПНЗ 3, где среднегодовая концентрация составила 0,7 ПДК (2,3 ПДК по старым критериям). Наиболее высокая среднемесячная концентрация вещества 1,5 ПДК (5 ПДК по старым критериям) отмечалась на ПНЗ 3 в июне. Максимально разовая концентрация формальдегида, величина которой составила 1,5 ПДК (2,2 ПДК по старым критериям), была зафиксирована в июне на ПНЗ 3.

Аммиак. Источниками загрязнения атмосферы данным веществом служат выбросы ОАО «Промсинтез», ЗАО «Химсинтез». Среднегодовая концентрация на уровне 0,5 ПДК. В течение года величины среднемесячных концентраций примеси изменялись в пределах 0,3-0,7 ПДК. Максимальная разовая концентрация примеси на уровне 0,6 ПДК зафиксирована в сентябре.

Хлорид водорода и свободный хлор. Среднегодовая, а также максимальная из разовых концентраций хлорида водорода значительно ниже уровня ПДК. Свободный хлор определялся эпизодически (только в январе); содержание его было на нулевой отметке.

Фенол. Среднегодовая концентрация находилась на отметке 0,2 ПДК (0,3 ПДК по старым критериям). Максимально разовая концентрация 0,9 ПДК фиксировалась в августе.

Серная кислота. Основной источник выбросов примеси – ОАО «Промсинтез». Среднегодовая концентрация находилась на уровне 0,2 ПДК. Максимально разовая концентрация отмечена в феврале, величина ее составила 0,7 ПДК.

Азотная кислота. Содержание вещества в атмосфере города невысоко – 0,1 ПДК. В течение года не отмечено ни одного случая превышения ПДК. Максимально разовая концентрация ингредиента 0,2 ПДК регистрировалась в сентябре.

Нитробензол. Средняя концентрация составила 0,001 мг/куб.м. Максимально разовая концентрация зафиксирована на уровне 1 ПДК (в течение года отмечено восемь случаев).

Кроме мониторинга на стационарных постах, проводился контроль атмосферного воздуха в зонах влияния вредных выбросов предприятий АО «Промсинтез» и ЗАО «Химсинтез» на передвижной лаборатории. В 2015 году было дополнительно было
отобрано 638 проб воздуха. По результатам анализов случаев превышения ПДКм.р. не зафиксировано.

Кроме того проводились выезды на передвижной лаборатории по расследованию жалоб населения. За год поступило 32 жалобы, отобрано 60 проб воздуха, из них зафиксировано 5 случаев превышения ПДКм.р.

| Тенденция загрязнения атмосферы г.о. Чапаевск в 2006-2015 годах |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| В | В | В | П | П | П | П | П | Н | Н |

Уровень загрязнения: Н – низкий, П – повышенный, В – высокий, ОВ – очень высокий

По сравнению с 2014 годом загрязнение атмосферы не изменилось, город остался в градации с «низким» загрязнением атмосферы.

2.1.2.3.5. Состояние загрязнения атмосферного воздуха городского округа Сызрань

Наблюдения проводятся на четырех стационарных постах, расположенных по адресам (картограмма 2.1.2.3.5.1):

Картограмма 2.1.2.3.5.1
ПНЗ 1 – метеостанция, улица Суворова, 169,
PНЗ 2 – пересечение улиц Астраханской и Циolkовского,
PНЗ 3 – улица Кашпирская,
PНЗ 6 – улица Звездная, 46 –
Кроме того, были продолжены стационарные наблюдения за загрязнением атмосферного воздуха на ПНЗ, расположенном в зоне влияния Сызранской ТЭЦ (пос. Заводской, улица Пархоменко, 55).

В атмосферном воздухе городского округа проводится определение 16 вредных примесей. В целом за год выполнено 25,2 тыс. определений. Состояние загрязнения атмосферы г.о. Сызрань характеризовалось следующим образом.

Концентрации основных примесей

Диоксид серы. Содержание примеси на уровне 0,1 ПДК. Максимально разовая концентрация 0,6 ПДК наблюдалась в декабре в условиях НМУ.

Диоксид азота. В целом по городу среднегодовая концентрация составила 1 ПДК. В большей степени примесь загрязнен атмосферный воздух в районе ПНЗ 2, где среднегодовая концентрация достигла значения 1,5 ПДК. В течение года величины среднемесячных концентраций примеси изменялись в целом по городу в пределах 0,6-1,7 ПДК, на ПНЗ 2 – в пределах 0,8-2,5 ПДК. Максимальная разовая концентрация примеси 1,5 ПДК была зафиксирована в июне на ПНЗ 2.

Взвешенные вещества. Запыленность всех районов города невелика – 0,3-0,4 ПДК. Максимально разовая концентрация примеси 0,6 ПДК фиксировалась на ПНЗ 2 и 3 в июне.

Оксид углерода. Среднегодовая концентрация примеси на уровне 0,4 ПДК. Максимальная разовая концентрация примеси, величина которой составила 1,6 ПДК, зафиксирована на ПНЗ 1 в мае и была связана с выбросами автотранспорта.

Бенз(а)пирен. Средняя концентрация в целом по городу составила 0,4 ПДК. Наибольшая среднемесячная концентрация достигла уровня 2,1 ПДК на ПНЗ 3 в феврале.

Концентрации специфических примесей

Формальдегид. Определение проводится на всех постах. Среднегодовая концентрация 0,7 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 2,3 раза. В годовом ходе среднемесячных концентраций в целом по городу

Среднегодовые концентрации примесей, вносящих наибольший вклад в загрязнение атмосферы г.о. Сызрань в 2015 году

<table>
<thead>
<tr>
<th>Концентрация, в ед. ПДК</th>
<th>Средств. концентрация</th>
<th>Диоксид азота</th>
<th>Углеводороды</th>
<th>Формальдегид</th>
<th>Хлорид водорода</th>
<th>Бенз(а)пирен</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,0</td>
<td>1,0</td>
<td>0,7</td>
<td>0,7</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Концентрации специфических примесей

Формальдегид. Определение проводится на всех постах. Среднегодовая концентрация 0,7 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 2,3 раза. В годовом ходе среднемесячных концентраций в целом по городу
отмечены колебания от 0,3 до 1 ПДК (1-3,3 ПДК по старым критериям). Максимально разовая концентрация формальдегида 3,3 ПДК (4,7 ПДК по старым критериям) отмечена в мае на ПНЗ 3 в период продолжительных НМУ.

Сажа. Основные источники поступления примеси в атмосферу – железная дорога, а также жилой частный сектор. Среднегодовая концентration составила 0,3 ПДК. Величины среднемесячных концентраций в течение года изменялись в пределах 0,2-0,5 ПДК. Максимальная разовая концентрация примеси 1,1 ПДК отмечалась в феврале и ноябре.

Фторид водорода. Наблюдения производились эпизодически (только в январе). Величина среднемесячной концентрации находилась на уровне 0,4 ПДК. Максимально разовая концентрация достигла значения 0,3 ПДК.

Хлорид водорода. Среднегодовая концентрация на уровне 0,7 ПДК. В годовом ходе среднемесячные концентрации примеси менялись в пределах 0,6-0,9 ПДК. Максимально разовая концентрация достигла 1,8 ПДК в октябре.

Сероводород. Определение примеси проводится на постах, расположенных в зоне влияния АО «Сызранский НПЗ». В целом по городу среднемесячные концентрации примеси находились на уровне 0,001 мг/куб.м. Максимально разовая концентрация 1 ПДК отмечена в июне на ПНЗ 2 и ноябре на ПНЗ 6.

Углеводороды (суммарно С1–С10). Среднегодовая концентрация составила 1,5 мг/куб.м. Максимально разовая концентрация примеси достигла 2,6 мг/куб.м в марте.

Аэrozоль серной кислоты. Содержание примеси на уровне 0,1 ПДК. Максимально разовая концентрация также была на уровне 0,1 ПДК.

Ароматические углеводороды (бензол, ксилол, толуол, этилбензол). Средние за год концентрации составили: бензола – 0,2 ПДК, ксилола, толуола и этилбензола – практически на нулевой отметке. Максимально разовые концентрации достигли уровней: по этилбензолу – 1 ПДК, ксилолу – 0,5 ПДК, бензолу – 0,3 ПДК, толуолу – 0,2 ПДК.

Помимо стационарных наблюдений, произведено 12 выездов в связи с расследованием жалоб населения. Отобрано и проанализировано 80 проб атмосферного воздуха. Случаев превышения ПДКм.р. не зафиксировано.

По сравнению с 2014 годом загрязнение атмосферы не изменилось, город остался в градации с «низким» загрязнением атмосферы.

2.1.2.3.6. Состояние загрязнения атмосферного воздуха городского округа Жигулевск

Наблюдения проводятся на одном стационарном посту, расположенном по адресу: ПНЗ 1 - улица Приволжская, 22.

В атмосферном воздухе города проводится определение 6 вредных примесей. За год выполнено 3,6 тыс. определений. Состояние загрязнения атмосферы городского округа характеризовалось следующим образом.

| Тенденция загрязнения атмосферы г.о. Сызрань в 2006-2015 годах |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| В | В | В | В | В | В | В | В | Н | Н |

Уровень загрязнения: Н – низкий, П – повышенный, В – высокий, ОВ – очень высокий
Концентрации основных примесей

Диоксид серы. Загрязнение атмосферы значительно ниже ПДК.

Диоксид азота. Среднегодовая концентрация примеси составила 0,9 ПДК. В годовом ходе среднемесячных концентраций отмечались колебания от 0,8 до 1,2 ПДК; наибольшая среднемесячная концентрация наблюдалась в марте. Именно в марте была зафиксирована максимальная из разовых концентраций примеси, величина ее достигла 0,8 ПДК.

Взвешенные вещества (пыль). Среднегодовая концентрация составила 0,7 ПДК. Наибольшая запыленность атмосферы наблюдалась в мае, когда величина среднемесячной концентрации поднималась до отметки 1 ПДК. Максимально разовая концентрация примеси 1,2 ПДК была отмечена дважды – в мае и сентябре.

Оксид углерода. Содержание примеси было невысоким – на уровне 0,4 ПДК. Максимальная из разовых концентраций ингредиента фиксировалась в июне и августе, величина ее составила 0,6 ПДК.

Концентрации специфических примесей

Аммиак. Загрязнение атмосферы на уровне 0,5 ПДК. В годовом ходе среднемесячных концентраций отмечены колебания от 0,2 до 1,3 ПДК. Максимальная из разовых концентраций примеси, достигшая значения 1 ПДК, была зарегистрирована в январе.

Формальдегид. Загрязнение атмосферы на уровне 0,4 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 1,3 раза. В течение года величины среднемесячных концентраций изменялись в пределах 0,3-0,6 ПДК (1-2 ПДК по старым критериям). Максимальная из разовых концентраций 0,6 ПДК была зафиксирована в январе.

Помимо стационарных наблюдений, в связи с расследованием жалоб населения произведен 1 выезд. В отобранных и проанализированных пробах атмосферного воздуха превышения ПДКм.р. не зафиксировано.

| Тенденция загрязнения атмосферы г.о. Жигулевск в 2006-2015 годах |
|-----------------|---|---|---|---|---|---|---|---|---|---|
| Н | Н | Н | Н | Н | Н | Н | Н | П | Н |

Уровень загрязнения: Н – низкий, П – повышенный, В – высокий, ОВ – очень высокий
По сравнению с 2014 годом загрязнение атмосферы не изменилось, город находится в градации с «низким» загрязнением атмосферы.

2.1.2.3.7. Состояние загрязнения атмосферного воздуха городского округа Отрадный

Городской округ Отрадный - промышленный город Самарской области. Основные источники загрязнения атмосферы — предприятия по добыче и переработке нефти и газа (ЗАО «Отрадненский газоперерабатывающий завод», ОАО «Самаранефтегаз», ООО «Газпром трансгаз Самара» Отраденское линейное производственное управление магистральных газопроводов), ООО «Отрадное»), производству машин и оборудования для добычи полезных ископаемых и строительства (ОАО «Отрадненский завод нефтного машиностроения»), производству линолеума, топлива и других синтетических материалов (ЗАО «Таркетт», ООО комбинат «Полимерстройматериалы», ООО «Технолайн»), переработке алюминия (ООО ТД «Реметалл-С»); пассажирский и грузовой автотранспорт. Наблюдения проводятся силами МКУ «Экология города Отрадного» при методическом руководстве Приволжского центра по мониторингу загрязнения окружающей среды на одном стационарном посту, расположенном по адресу ПНЗ 91 - улица Советская, 90а (картограмма 2.1.2.3.7.1).

Картограмма 2.1.2.3.7.1

В атмосферном воздухе города проводится определение 10 вредных примесей. За год выполнено 7,7 тыс. определений. Состояние загрязнения атмосферы г.о. Отрадный характеризовалось следующим образом.

Концентрации основных примесей
Диоксид серы. Загрязнение атмосферы значительно ниже ПДК.
Диоксид азота. Среднегодовая концентрация – 1,7 ПДК. В годовом ходе среднемесячных концентраций отмечались колебания от 0,8 до 3 ПДК. Наибольшие среднемесячные концентрации на уровне 2,5-3 ПДК наблюдались в первом квартале года. Максимальная из разовых концентраций диоксида азота 1,6 ПДК регистрировалась в январе.
Взвешенные вещества. Среднегодовая концентрация составила 0,5 ПДК. В течение года величины среднемесячных концентраций изменились в пределах 0,3-0,8 ПДК, наиболее высокие из них регистрировались в июне-июле. Максимально разовая концентрация примеси 1 ПДК отмечена в январе.

Оксид углерода. Среднегодовое содержание примеси было невысоким – 0,4 ПДК. Максимальная из разовых концентраций ингредиента составляла 0,8 ПДК и наблюдалась в марте.

<table>
<thead>
<tr>
<th>Концентрация, в ед. ПДК ср.сут.</th>
<th>Диоксид азота</th>
<th>Формальдегид</th>
<th>Хлорид водорода</th>
<th>Фторид водорода</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,7</td>
<td>0,9</td>
<td>0,9</td>
<td>0,6</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Среднегодовые концентрации примесей, вносящих наибольший вклад в загрязнение атмосферы г.о.Отрадный в 2015 году

Концентрации специфических примесей

Формальдегид. Загрязнение атмосферы на уровне 0,9 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 3 раза. В течение года величины среднемесячных концентраций изменились в пределах 0,3-1,6 ПДК (1-5,3 ПДК по старым критериям), наиболее высокие из них отмечены с мая по август. Максимально разовая концентрация ингредиента достигла отметки 1,1 ПДК (1,5 ПДК по старым критериям); она была зарегистрирована в сентябре.

Сероводород. Среднегодовая концентрация примеси 0,001 мг/куб.м; величины среднемесячных концентраций были стабильны в течение года. Максимально разовая концентрация сероводорода 1,3 ПДК была зафиксирована в октябре.

Фенол. Загрязнение атмосферы на уровне 0,3 ПДК (0,7 ПДК по старым критериям). В годовом ходе среднемесячных концентраций отмечались колебания от 0,2 до 0,8 ПДК. Максимальная из разовых концентраций примеси, достигшая значения 1,2 ПДК, регистрировалась в сентябре.

Фторид водорода. Среднегодовая концентрация на уровне 0,6 ПДК. В годовом ходе величины среднемесячных концентраций изменились в пределах 0,4-0,8 ПДК. Максимально разовая концентрация примеси составила 2 ПДК в сентябре.

Хлорид водорода. Среднегодовое содержание примеси на уровне 0,9 ПДК. В течение года среднемесячные концентрации ингредиента варьировали в пределах 0,6-1,2 ПДК. Максимально разовая концентрация ингредиента, составившая 1,4 ПДК, была зафиксирована в феврале.

Алюминий. Среднегодовая концентрация металла составила 0,03 ПДК. В течение года превышений гигиенических нормативов не отмечалось. Источник загрязнения – ООО ТД «РЕММЕТАЛЛ-С», занимающийся переработкой алюминий содержащих сплавов.
По сравнению с 2014 годом загрязнение атмосферы снизилось, город переместился из градации с «повышенным» в градацию с «низким» загрязнением атмосферы.

2.1.2.3.8. Состояние загрязнения атмосферного воздуха городского округа Похвистнево

Городской округ Похвистнево — промышленный город Самарской области. Основные источники загрязнения атмосферы — заводы: машиностроительный АО «Аверс М» и железобетонных изделий, мебельный комбинат; предприятия по производству стройматериалов, легкой и пищевой промышленности, а также связанные с добычей и транспортировкой нефти и газа, автотранспорт.

Наблюдения проводятся на одном стационарном посту территориальной наблюдательной сети, расположенном по адресу: улица Ново-Полевая, 45 (картограмма 2.1.2.3.8.1).

![Картограмма 2.1.2.3.8.1](image)

В атмосферном воздухе города проводится определение 8 вредных примесей. За год выполнено 4,7 тыс. определений. Состояние загрязнения атмосферы городского округа характеризовалось следующим образом.

Концентрации основных примесей

Диоксид серы. Загрязнение атмосферы значительно ниже ПДК.

Диоксид азота. Среднегодовая концентрация — 0,4 ПДК. В годовом ходе среднемесячных концентраций отмечались колебания от 0,2 до 0,9 ПДК; наибольшая среднемесячная концентрация наблюдалась в январе. Максимальная из разовых концентраций на уровне 0,8 ПДК была зафиксирована в январе.

Оксид углерода. Содержание примеси было невысоким — 0,5 ПДК. В годовом ходе среднемесячных концентраций отмечен небольшой максимум 0,7 ПДК в июне. Максимальная из разовых концентраций ингредиента 0,8 ПДК фиксировалась в неоднократно в течение года.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень загрязнения</td>
<td>Н</td>
<td>Н</td>
<td>Н</td>
<td>Н</td>
<td>П</td>
<td>П</td>
<td>П</td>
<td>П</td>
<td>П</td>
<td>Н</td>
</tr>
</tbody>
</table>

Тенденция загрязнения атмосферы г.о. Отрадный в 2006-2015 годах
Концентрации специфических примесей

Формальдегид. Загрязнение атмосферы в городе на уровне 0,8 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 2,7 раза. Наибольшие среднемесячные концентрации отмечались в летние месяцы, когда уровень загрязнения атмосферы формальдегидом достигал 1,2-1,3 ПДК (4-4,3 ПДК по старым критериям). Максимально разовая концентрация примеси отмечена в июле; величина ее составила 0,8 ПДК (1,2 ПДК по старым критериям).

Фенол. Загрязнение атмосферы на уровне 0,3 ПДК (0,7 ПДК по старым критериям). В течение года величины среднемесячных концентраций изменялись в пределах 0,2-0,5 ПДК. Максимальная из разовых концентраций фенола, достигшая значения 0,8 ПДК, была зафиксирована в августе.

Сероводород. Среднегодовая концентрация находилась на уровне 0,001 мг/куб.м. Максимальная разовая концентрация ингредиента 0,5 ПДК была зафиксирована в январе.

Углеводороды (суммарно С1–С10). Загрязнение атмосферного воздуха на уровне 1,4 мг/куб.м. Значения среднемесячных концентраций колебались от 1,1 до 1,6 мг/куб.м. Максимальная разовая концентрация 2,7 мг/куб.м была зарегистрирована в сентябре.

Бензол. Среднегодовая концентрация составила 0,2 ПДК. Максимальная из разовых концентраций достигла значения 0,8 ПДК.

| Таблица 1: Тенденция загрязнения атмосферы г.о. Похвистнево в 2009-2015 годах |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| П | В | П | В | П | Н | Н |

Уровень загрязнения: Н – низкий, П – повышенный, В – высокий, ОВ – очень высокий

По сравнению с 2014 годом загрязнение атмосферы не изменилось, город находится в градации с «низким» загрязнением атмосферы.
2.1.2.3.9. Состояние загрязнения атмосферного воздуха городского поселения Безенчук

Основными источниками загрязнения атмосферы г.п. Безенчук являются заводы железобетонных изделий и кукурузокалибровочный, хлебокомбинат, элеватор, мясоперерабатывающее предприятие, птицефабрика. Наблюдения проводились на одном стационарном посту территориальной наблюдательной сети, расположенном по адресу: улица Мамистова, 52 (картограмма 2.1.2.3.9.1).

В атмосферном воздухе проводится определение 8 вредных примесей. За год выполнено 4,2 тыс. определений. Состояние загрязнения атмосферы городского поселения характеризовалось следующим образом.

Концентрации основных примесей

Диоксид серы. Уровень загрязнения атмосферного воздуха низкий. Среднегодовая и максимальная разовая концентрация примеси практически находились на нулевой отметке.

Диоксид азота. Содержание примеси в атмосферном воздухе на уровне 0,6 ПДК. В течение года среднемесячные концентрации изменялись от 0,5 до 1,5 ПДК, наиболее высокая из них отмечена в феврале. Максимальная из разовых концентраций на уровне 0,7 ПДК была зафиксирована в марте.

Оксид углерода. Среднегодовая концентрация не превышала санитарных норм и составила 0,4 ПДК. Максимальная разовая концентрация примеси на уровне 0,6 ПДК фиксировалась в январе и марте.
Концентрации специфических примесей

Формальдегид. Среднегодовая концентрация на уровне 0,4 ПДК. Однако, оценивая состояние загрязнения атмосферы формальдегидом с учетом старых ПДК, средняя за год концентрация примеси превысила норму в 1,3 раза. В течение года величины среднемесячных концентраций изменялись в пределах 0,3 – 0,7 ПДК (1-2,3 ПДК по старым критериям). Максимальная разовая концентрация 0,8 ПДК (1,1 ПДК по старым критериям) отмечена в октябре.

Аммиак. Среднегодовая концентрация примеси составила 0,5 ПДК. Несколько большее загрязнение атмосферы аммиаком наблюдалось в феврале, когда величина среднемесячной концентрации достигала уровня 0,6 ПДК. Именно в этот месяц зафиксирована максимальная разовая концентрация примеси, величина которой достигла значения 0,4 ПДК.

Сероводород. Среднегодовая концентрация находилась на нулевой отметке. Максимальная разовая концентрация ингредиента 0,4 ПДК зарегистрирована в марте.

Углеводороды (суммарно C1–C10). Среднегодовой уровень загрязнения атмосферного воздуха углеводородами составил 1,3 мг/куб.м. Значения среднемесячных концентраций колебались от 0,7 до 3,0 мг/куб.м. Максимальная разовая концентрация 6,0 мг/куб.м была зарегистрирована в феврале.

Этилбензол. Среднегодовая концентрация составила 0,004 мг/куб.м. Максимальная из разовых концентраций достигла значения 1,5 ПДК.

<table>
<thead>
<tr>
<th>Концентрация, в. ед. ПДК сред.</th>
<th>Углеводороды</th>
<th>Диоксид азота</th>
<th>Аммиак</th>
<th>Формальдегид</th>
<th>Оксид углерода</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9</td>
<td>0,6</td>
<td>0,5</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
</tbody>
</table>

По сравнению с 2014 годом загрязнение атмосферы не изменилось, город находится в градации с «низким» загрязнением атмосферы.
2.1.2.3.10. Состояние загрязнения атмосферного воздуха на территории отдельных муниципальных образований (по данным исследований)

В течение года на территории Самарской области специалистами ФГБУ «Приволжское УГМС» проводилось дополнительное исследование загрязнения атмосферного воздуха. Было обследовано 104 населенных пункта в двадцати двух районах губернии. В воздушной среде всех обследованных населенных пунктов определялось содержание так называемых основных примесей – диоксида серы, оксида углерода, диоксида и оксида азота; кроме того, в различных населенных пунктах определялись специфические для данной местности загрязняющие вещества – взвешенные вещества (пыль), сероводород, сажа, аммиак, углеводороды (суммарно С1–С10), ароматические углеводороды (бензол, ксилол, толуол), метилмеркаптан.

Результаты эпизодических наблюдений показали следующее.

В м.р. Алексеевский (н.п. Алексеевка, Корнеевка, Первокоммунарский, Седьши) концентрации всех определяемых ингредиентов находились в пределах нормы на уровне 0,1-1,0 ПДК.

В м.р. Безенчукский (н. п. Дружба, Привольный) концентрации всех определяемых ингредиентов находились в допустимых пределах на уровне 0,1-0,7 ПДК.

В м.р. Богатовский (н. п. Богатое, Восточный, Федоровка) концентрации всех определяемых ингредиентов находились в пределах 0,3-0,8ПДК.

В м.р. Большенглушицкий в н.п. Мокша среднее содержание определяемых ингредиентов не превысило пределов нормы и составляло 0,1-0,8 ПДК.

В м.р. Большечерниговский (н.п. Большая Черниговка) среднее содержание определяемых примесей составляло 0,1-0,5 ПДК.

В м.р. Борский (н.п. Васильевка, Кonoваловка, Новоборский, Новый Кутулук, Подсоленное) средние концентрации определяемых веществ находились в пределах 0,1-0,7 ПДК.

В м.р. Волжский (н.п. Винтай, Домашкины Вершины, Журавли, Зелененький, Курумоч, Николаевка, Новосемейкино, Преображенка, Придорожный, Стройкерамика, Стромилово, Рошнинский, Рубежное, Черновский, Яблоневый Овраг) концентрации всех определяемых ингредиентов находились в пределах нормы и составляли 0,1-0,9 ПДК.

В м.р. Елховский (н.п. Березовка, Пролейка) концентрации всех определяемых ингредиентов не превысили пределов нормы и составляли 0,1-0,8 ПДК.

В м.р. Елховский (н.п. Березовка, Пролейка) концентрации всех определяемых ингредиентов не превысили пределов нормы и составляли 0,1-0,8 ПДК.

В м.р. Исаклинский (н.п. Ильинский, Исаклы, Ключи, Смольково, Старое Вечканово, Старый Шунгут) концентрации определяемых ингредиентов соответствовали гигиеническим нормативам и находились в пределах 0,1-0,9 ПДК.

В м.р. Кинельский (н. п. Алакаевка, Бузаевка, Георгиевка, Домашка, Кинель, Комсомольский, Красный Ключ, Круглины, Малая Малышевка, Михайловский, Станция Кинель, Усть-Кинельский, Филипповка) содержание большинства определяемых ингредиентов находилось в пределах нормы и составляло 0,1-0,9 ПДК.

В м.р. Кинель-Черкасский (н.п. Алтухово, Вязники, Горелый Колок, Ерзовка, Кротовка, Новые Ключи, Первомайский, Сарбай, Черновка) средние концентрации всех определяемых ингредиентов находились в пределах санитарных норм и составляли 0,1-0,7 ПДК.

В м.р. Клявлинский (н.п. Старое Резяпкино, Старое Семенкино) концентрации определяемых ингредиентов находились в пределах 0,1-0,8 ПДК.

В м.р. Кошкининский (н.п. Долиновка, Киевка, Надеждино, Русская Васильевка, Титовка) средние концентрации большинства определяемых ингредиентов находились в пределах санитарных норм и составляли 0,1-0,9 ПДК.

В м.р. Красноармейский (н. п. Богусский, Братский) концентрации определяемых ингредиентов находились в пределах 0,2-0,8 ПДК.
В м.р. Красноярский (н.п. Булак, Водный, Висловка, Звездный, Красный Яр, Мирный, Подлесный, Тростянка, Яблоневый) концентрации большинства определяемых ингредиентов находились в пределах 0,1-0,8 ПДК. Исключение составили углеводороды в н.п. Мирный, среднее содержание которых составляло 1,3 ПДК.

В м.р. Нефтегорский (в н.п. Бариновка, Ветлянка, Нефтегорск, Новая Жизнь) концентрации определяемых ингредиентов находились в пределах 0,1-0,9 ПДК.

В м.р. Похвистневский (н.п. Парфеновка, Стояино) средние концентрации всех определяемых ингредиентов находились в пределах 0,1-0,8 ПДК.

В м.р. Сергиевский (н.п. Воротнее, Калиновка, Калиновый Ключ, Красные Дубки, Красный Городок, Липовка, Нижняя Козловка, Серноводск, Сидоровка, Сургут) средние концентрации всех определяемых ингредиентов находились в пределах 0,1-0,8 ПДК.

В м.р. Сызранский (н.п. Лесная Поляна, Печерские Выселки) средние концентрации большинства определяемых ингредиентов находились в пределах 0,1-1,0 ПДК. Исключение составили углеводороды в н.п. Лесная Поляна, содержание которых превысило гигиенический норматив в 1,2 раза.

В м.р. Хворостянский в н.п. Студенцы содержание всех определяемых ингредиентов находилось в пределах 0,1-0,5 ПДК.

В м.р. Челно-Вершинский в н.п. Каменный Брод содержание всех определяемых ингредиентов находилось в пределах 0,1-0,8 ПДК.

2.1.2.4. Кислотность и химический состав атмосферных осадков

Данные сети мониторинга кислотности и химического состава атмосферных осадков используются для установления общего уровня атмосферного загрязнения, оценки перенosa веществ в атмосфере, в том числе межрегионального, определения сезонной и годовой нагрузки содержащихся в осадках химических соединений на окружающую среду. При этом примеси, содержащиеся в осадках, рассматриваются как индикатор загрязнения определенного слоя атмосферы.

Химический состав атмосферных осадков является интегральной характеристикой содержания загрязняющих веществ в облачном и подоблачном слое атмосферы. Концентрация химических примесей в осадках обычно сравнительно невелика, однако, если учесть всю сумму осадков за длительные периоды (сезон, год), то количество выпадающих с ними веществ составит существенную величину, которая должна учитываться в гидрологических, гидрогеологических и биохимических расчетах и моделях.

Особое значение также приобретает изучение кислотности осадков. Кислотные дожди оказывают как прямое влияние на биоту, так и косвенное, закисляя водоемы и почвы, меняя их химический состав.

На территории Самарской области регулярные наблюдения за кислотностью атмосферных осадков проводятся на трех метеорологических станциях ФГБУ «Приволжское УГМС» - гг. Самара, Сызрань, Тольятти; химическим составом – в г.о. Тольятти.

В каждой пробе атмосферных осадков определяется содержание основных ионов (ионов аммония, калия, натрия, магния, кальция и сульфат-ион, нитрат-ион, хлорид-ион).
гидрокарбонат-ионов) и две интегральные характеристики – водородный показатель pH и удельная электропроводность.

Ежегодно в атмосферных осадках преобладающими являются гидрокарбонат-ионы, сезонные изменения концентраций которых находились в 2015 году в пределах 26–56 % суммы ионов.

Кислотность атмосферных осадков в целом за год находилась в пределах нормы и изменялась по метеостанциям в интервале: на ОГМС Самара 4,8-7,9 ед., МС Тольятти 6,1-7,2 ед., МС Сызрань 5,4-7,7 ед.

2.1.2.5. Загрязнение снежного покрова

Состояние окружающей среды крупных городов обычно оценивается по состоянию отдельных ее составляющих: атмосферного воздуха, поверхностных и подземных вод, почв, снежного и растительного покрова, здоровья горожан. Наиболее динамичной и поэтому наиболее сложной для анализа является атмосфера, которая оказывает существенное влияние на состояние всех компонентов экосистемы.

Снег накапливает в своем составе практически все вещества, поступающие в атмосферу. Снежный покров как естественный планшет-накопитель дает действительную величину сухих и влажных выпадений в холодный сезон и количественную величину параметров загрязнения.

2.1.2.5.1. Критерии оценки уровня загрязнения снежного покрова

Для оценки уровня загрязнения снежного покрова соединениями серы и суммарным азотом используются уровни критических нагрузок, разработанные Объединенной национально-экологической комиссией Европы. Уровень критической нагрузки определяет максимальное годовое выпадение загрязняющего вещества, при котором не оказывается негативного влияния на растительный мир и почву. На основании «Карты критических нагрузок для Европы» уровень критической нагрузки соединений серы для средней части европейской территории России составляет 320-800 кг/кв.км в год; уровень критической нагрузки суммарного азота – 208 кг/кв.км в год.

Для остальных загрязняющих веществ, присутствующих в снежном покрове, уровни критической нагрузки не разработаны, поэтому для сравнительной оценки состояния загрязнения снежного покрова (талых вод) использовались предельно-допустимые концентрации (ПДК) вредных веществ, действующие для поверхностных вод рыбохозяйственного назначения.

Величины предельно допустимых концентраций вредных веществ, определяемых в снежном покрове, представлены в таблице 2.1.2.5.1.1.
Таблица 2.1.2.5.1.1.

<table>
<thead>
<tr>
<th>Ингредиенты</th>
<th>Класс опасности</th>
<th>ПДК, мг/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Сульфаты</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>2. Азот нитратный</td>
<td>4</td>
<td>9,0</td>
</tr>
<tr>
<td>3. Азот аммонийный</td>
<td>4</td>
<td>0,4</td>
</tr>
<tr>
<td>4. Хлориды</td>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>5. Магний</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>6. Na+K</td>
<td>-</td>
<td>170</td>
</tr>
<tr>
<td>7. Кальций</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>8. pH</td>
<td>4</td>
<td>6,5-8,5</td>
</tr>
</tbody>
</table>

2.1.2.5.2. Состояние загрязнения снежного покрова

На территории Самарской области отбор проб снега осуществляется подразделениями ФГБУ "Приволжское УГМС" на семи метеостанциях – Аглос, Безенчук, Большая Глущица, Клявлино, Серноводск, Сызрань и Тольятти.

В пробах снега проводится определение кислотности и электропроводности; определяется содержание сульфатов, гидрокарбонатов, хлоридов, азота аммонийного и нитратного, катионов кальция, магния, а также суммы ионов натрий+калий. Как и в предыдущие годы, в зимний период 2014-2015гг. содержание практически всех ингредиентов было в пределах нормативов. Исключение составил азот аммонийный, максимальная концентрация которого достигала 1,2 ПДК на МС Серноводск. Минимальное содержание азота аммонийного составляло 0,0 мг/дм³ (АГМС Аглос). Средний уровень критической нагрузки соединений серы для территории Самарской области в 2015г. составил 404 кг/кв.км в год; суммарного азота - 147 кг/кв.км в год, что находилось в пределах значений данных показателей для средней части территории европейской России.

Влагозapas – общее количество воды в твердом и жидким виде, содержащееся в рассматриваемый момент в снежном покрове, равен произведению высоты снега на его плотность. Снег на территории Самарской области в рассматриваемый период характеризовался умеренным влагозапасом (48-108 г/см3).

Водородный показатель (рН). По опубликованным данным, незагрязненные атмосферные осадки обычно имеют слабокислую реакцию (рН 5,5–5,6).

В большинстве районов Самарской области осадки (снег) соответствуют кислой среде, рН находился в пределах 6,25 – 6,98 единиц. На территории АЭ Безенчук, МС Клявлино и СГМО Тольятти кислотность осадков соответствовала щелочной среде, рН находился в пределах 7,34 – 7,73 единиц.

2.1.2.6. Состояние озонового слоя

Озон представляет собой особую форму кислорода, имеющую химическую формулу О$_3$.

Озоновый «экран» расположен в стратосфере, на высотах от 7-8 км на полюсах, 17-18 километров на экваторе и примерно до 50 километров над земной поверхностью. Больше всего озона в слое 22–24 километра над Землей.

Слой озона удивительно тонок. Если бы этот газ сосредоточить у поверхности Земли, то он образовал бы пленку лишь в 2-4 мм толщиной (минимум – в районе экватора, максимум – у полюсов). Однако и эта пленка надежно защищает человечество, почти полностью поглощая опасные ультрафиолетовые лучи. Без нее жизнь сохранилась бы лишь в глубинах вод (глубже 10 м) и в тех слоях почвы, куда не проникает солнечная радиация. Озон поглощает некоторую часть инфракрасного излучения Земли. Благодаря этому он задерживает около 20% излучения Земли, повышая отепляющее действие
атмосферы. Также озон регулирует жесткость космического излучения. Если этот газ хотя бы частично уничтожается, то, естественно жесткость излучения резко возрастает, а, следовательно, происходят реальные изменения растительного и животного мира.

В качестве единицы измерения общего содержания озона (ОСО) принята так называемая единица Добсона (еД или DU), которая соответствует толщине озонового слоя, собранного отдельно и приведенного к нормальному атмосферному давлению 760 мм рт.ст. и нормальной температуре 0°С. Одна единица Добсона соответствует 0,01 мм толщины этого слоя. Нормальным считается значение 340-360 еД. Дырой считается участок атмосферы с уровнем озона меньше 220 еД.

Максимум общего содержания озона над Самарой в 2015 году составил 0,371 см в апреле (371 единица Добсона), минимум – 0,277 см в ноябре (277 единиц Добсона).

2.1.2.7. Радиационная обстановка

2.1.2.7.1. Критерии радиационного состояния окружающей среды

Критерии радиационного загрязнения:

– мощность экспозиционной дозы гамма-излучения (МЭД) оценивается по сравнению с критическим значением, рассчитанным для каждого пункта наблюдения за предыдущий трехлетний период;

– значение суммарной бета-активности радиоактивных выпадений, а также значение суммарной бета-активности радиоактивных веществ в приземном слое атмосферы сравниваются с фоновым значением за предыдущий месяц.

Допустимый (безопасный) уровень естественного фона излучения, определенный «Нормами радиационной безопасности» (НРБ – 99/2009), по мощности экспозиционной (эквивалентной) дозы (МЭД) гамма-излучения на территории составляет до 0,30 мкЗв/час (30 мкR/час), по суммарной эффективной удельной активности радионуклидов в почве – до 370 Бк/кг.

2.1.2.7.2. Радиационная обстановка

На территории Самарской области, обслуживаемой ФГБУ «Приволжское УГМС», находятся 11 метеостанций (ОГМС Самара, МС Авангард, АЭ Безенчук, МС Большая Глушица, Клявлино, Кинель-Черкассы, Новодевичье, Серноводск, Сызрань, Тольятти, Челно-Вершины), а также ЛМЗС Новокуйбышевск, ЛМЗА Чапаевск и ПНЗ Похвистнево, проводящих измерения мощности экспозиционной дозы гамма-излучения (МЭД), 2 станции (Самара и Тольятти), проводящих наблюдения за концентрацией суммарной бета-активности радиоактивных аэрозолей в приземном слое атмосферы.

Среднегодовая величина МЭД составила по Самарской области 0,11 мкЗв/ч, т.е. находилась в пределах нормы (таблица 2.1.2.7.2.1). Превышений критического значения МЭД, вычисленного для каждой метеостанции области по результатам измерений за предыдущие годы, на территории Самарской области не зафиксировано.
Таблица 2.1.2.7.2.1
Среднее и максимальное значение МЭД на открытой местности в Самарской области

<table>
<thead>
<tr>
<th>Название метеостанции</th>
<th>Муниципальный район</th>
<th>Среднее значение МЭД, мкЗв/ч</th>
<th>Максимальное значение МЭД, мкЗв/ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>ОГМС Самара</td>
<td>Волжский</td>
<td>0,14</td>
<td>0,17 (ноябрь)</td>
</tr>
<tr>
<td>МС Авангард</td>
<td>Алексеевский</td>
<td>0,11</td>
<td>0,13 (октябрь)</td>
</tr>
<tr>
<td>АС Безенчук</td>
<td>Безенчукский</td>
<td>0,11</td>
<td>0,14 (октябрь)</td>
</tr>
<tr>
<td>МС Большая Глушица</td>
<td>Больщеглушицкй</td>
<td>0,11</td>
<td>0,13 (сентябрь)</td>
</tr>
<tr>
<td>МС Князьино</td>
<td>Князьинский</td>
<td>0,09</td>
<td>0,13 (май)</td>
</tr>
<tr>
<td>МС Кинель-Черкассы</td>
<td>Кинель-Черкасский</td>
<td>0,09</td>
<td>0,15 (сентябрь)</td>
</tr>
<tr>
<td>МС Новодевичье</td>
<td>Шигонский</td>
<td>0,11</td>
<td>0,16 (июль)</td>
</tr>
<tr>
<td>МС Серноводск</td>
<td>Сергиевский</td>
<td>0,11</td>
<td>0,13 (май)</td>
</tr>
<tr>
<td>МС Сызрань</td>
<td>Сызранский</td>
<td>0,10</td>
<td>0,13 (август)</td>
</tr>
<tr>
<td>МС Тольятти</td>
<td>Ставропольский</td>
<td>0,12</td>
<td>0,14 (январь)</td>
</tr>
<tr>
<td>МС Челно-Вершины</td>
<td>Челнорешинский</td>
<td>0,11</td>
<td>0,13 (апрель)</td>
</tr>
<tr>
<td>ЛМЗС Новокуйбышевск</td>
<td>Волжский</td>
<td>0,09</td>
<td>0,13 (ноябрь)</td>
</tr>
<tr>
<td>ЛМЗА Чапаевск</td>
<td>Волжский</td>
<td>0,10</td>
<td>0,13 (март)</td>
</tr>
<tr>
<td>ПНЗ г.о.Похвистнево</td>
<td>Похвистневский</td>
<td>0,09</td>
<td>0,11 (декабрь)</td>
</tr>
</tbody>
</table>

Уровень загрязнения суммарной бета-активности радиоактивных выпадений определялся в городах Самара и Тольятти. Среднегодовое значение радиоактивных выпадений составило по Тольятти 2,96 Бк/м² в сутки и по Самаре 3,74 Бк/м², что соответствует средним значениям за предыдущие годы. Максимальное значение в Тольятти – 11,38 Бк/м² в сутки – отмечено 2-3 октября, в Самаре – 16,37 Бк/м² в сутки – 4-5 ноября. Эти случаи не являются случаями высокого загрязнения (десятикратное превышение фонового значения за предыдущий месяц по результатам измерений на пятье сутки после отбора пробы). Экстремально высокого загрязнения (превышение значений 110 Бк/м² в сутки по результатам измерений через один сутки после отбора пробы) также не наблюдалось.

Концентрации суммарной бета-активности радиоактивных аэрозолей в приземном слое атмосферы определяются в Самаре. Среднегодовая концентрация составила 11,9*10⁻⁵ Бк/м³, что соответствует средним значениям за предыдущие годы. Максимальное значение концентрации суммарной бета-активности радиоактивных аэрозолей в приземном слое атмосферы составило 48,4*10⁻⁵ Бк/м³ 30 апреля - 1 мая. Случаев высокого (пятитратное превышение фонового значения за предыдущий месяц по результатам наблюдений на пятье сутки после отбора пробы) и экстремально высокого (превышения значения 3700*10⁻⁵ Бк/м³ по результатам наблюдений через один сутки после отбора пробы) загрязнения не наблюдалось.

В течение 2015 года специалистами ФГБУ «Приволжское УГМС» проводились дополнительные радиационные исследования территорий г.о.Тольятти и отдельных населенных пунктов Алексеевского, Богатовского, Большеглушицкого, Волжского, Исаклинского, Кинельского, Кинель-Черкасского, Красноармейского, Красноярского, Нефтегорского, Похвистневского, Сергиевского, Сызранского и Челно-Вершинского районов Самарской области. Результаты наблюдений показали соответствие радиационного качества окружающей среды нормам радиационной безопасности.

С целью определения уровня радиационного загрязнения почвы на территории городского округа Тольятти в 2015 году специалистами ФГБУ «Приволжское УГМС» было проведено обследование по принципу площадной съемки. В ходе обследования было отобрано 50 точечных проб почвы на территории г.о. Тольятти, в различных районах...
(Комсомольском, Автозаводском и Центральном) и функциональных зонах (промышленной, рекреационной, селитебной) города.

На территории г.о.Тольятти в целом и во всех районах и функциональных зонах города средние и максимальные показатели эффективной удельной активности радионуклидов природного (K-40, Th-232, Ra-226) и техногенного (Cs-137) происхождения значительно ниже допустимого безопасного уровня (Картограмма 5.3.1).

2.2. Водные ресурсы

2.2.1. Поверхностные воды

2.2.1.1. Гидрометеорологические условия прохождения весеннего половодья на реках и водохранилищах

Март характеризовался преобладанием повышенного температурного режима и острым дефицитом осадков: значение средней за месяц температуры воздуха за март составило -4° и оказалось выше климатического на 1,0°. Осадки, выпадали в течение 1-3 дней, за месяц в среднем отмечено 5 мм или 23% от нормы.

В результате снеготаяния в течение марта (особенно во второй и третьей декадах) произошла значительная потеря талого стока, что снизило в дальнейшем интенсивность весеннего паводка.

На большинстве рек половодье началось 4-10 апреля, на реке Большой Иргиз (н.п.Украинка) - 13 марта, что на 2-8 дней позже, на р.Большой Иргиз (н.п.Украинка) - на 18 дней раньше среднемноголетних дат.

В основном реки вскрылись в период с 29 марта по 12 апреля, большинство раньше на 1-5 дней, реки Кондурча, Самара (н.п.Алексеевка), Чапаевка, Большой Иргиз (н.п.Украинка) - на 3-5 дней позже среднемноголетних дат.

Апрель характеризовался умеренным температурным режимом и ежедекадным выпадением осадков. Заморозки в воздухе отмечались в течение 4-9-ти суток, на поверхности почвы – 13-20-ти суток с интенсивностью от 0 до-7°.

Среднеобластное значение температуры воздуха во второй декаде (6,8°) оказались в пределах нормы, в первой (2,0°) и в третьей (8,1°) – ниже ее соответственно на 0,5° и 1,8°. В целом за апрель средняя температура воздуха составила 5,7°, что ниже нормы на 0,6°.

В результате дефицита осадков, сухой и солнечной погоды, установившейся в марте, произошло вымерзание и испарение влаги из снежного покрова, что привело к значительной потере стока. Максимальные уровни воды на большинстве рек наблюдались 11-18 апреля, на р.Большой Иргиз (н.п.Украинка) – 17 марта, на р.Самара (н.п.Алексеевка) - 11 мая, что в пределах среднемноголетних значений и на 2-4 дня позже, на р.Большой Иргиз – н.п.Украинка - на 21 день раньше и были ниже среднемноголетних значений на 88-448 см. Общий подъём над меженными отметками составил 99-262 см, на р.Чагра и Большой Иргиз - 8-18 см. Наибольшая прибыль за сутки была от 23 до 103 см, на рр.Чагра и Большой Иргиз – 2-9 см. Максимальные уровни воды на реках Кондурча (253 см), Самара (н.п.Елшанка – 218 см), Чагра (4 см), Малый Кинель (198 см) были наименьшими за весь период наблюдений.

Волжские водохранилища

Формирование весеннего половодья началось при аномальных гидрометеорологических условиях: пониженное летне-осенние увлажнение почвы 2014 года по бассейну р.Вятки и акватории, пониженный температурный режим в марте 2015 года (на 1,5° ниже среднемноголетних значений) и холодная затяжная весна, из-за чего половодье на реках акватории началось позже нормы на 9 дней (первая декада
апреля) а постепенный подъем уровня воды произошел во второй декаде апреля. Характерной особенностью половодья 2015 года явился затяжной характер, низкие уровни на малых реках (ниже среднемноголетних значений на 0,5-2,5 м) и соответственно небольшие расходы. Максимальный приток с малых рек акватории отмечался во второй декаде апреля (16-19 апреля) и составил - 3400 м³/сек, что в пределах нормы, по р.Вятке 7-10 мая - 4100 м³/сек, что меньше среднемноголетнего максимума на 30%.

Суммарный максимальный боковой приток к Куйбышевскому водохранилищу наблюдался 19, 20 апреля и составил 5300 м³/с, что в пределах нормы. Максимальный суммарный приток оказался в пределах 18950 м³/с (12 мая). Максимальный сброс через Жигулевский гидроузел наблюдался 3 мая величиной 16150 м³/с и был наименьшим за весь период наблюдений.

В связи с открытием водосливной плотины Жигулевского гидроузла 28 апреля, что позже нормы, началось повышение уровня воды на Саратовском водохранилище. Максимальные уровни воды на Саратовском водохранилище прошли 4-7 мая и были ниже среднемноголетних значений на 85-300 см.

Полностью ото льда Куйбышевское водохранилище очистилось 19 апреля, что на 8 дней раньше, Саратовское - 16 апреля, что на 3 дня раньше среднемноголетних дат.

2.2.1.2. Критерии загрязненности воды

Наиболее распространенными в настоящее время критериями оценки качества поверхностных вод суши являются предельно допустимые концентрации вредных веществ для водных объектов рыбхозяйственного назначения (сокращенно ПДК).

Предельно допустимая концентрация веществ в воде – концентрация веществ в воде, выше которой вода непригодна для одного или нескольких видов водопользования (ГОСТ 27065-86).

Нормативы ПДК различных веществ, утвержденные приказом Росрыболовства № 20 от 18 января 2010 года, едини для всего государства и представлены в документе «Нормативы качества воды водных объектов рыбхозяйственного значения, в том числе
нормативы предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения». Нормативы на содержание растворенного в воде кислорода и легкоокисляемых органических веществ (по БПК₅) регламентируются в соответствии с СанПиН 2.1.5.980-00 "2.1.5. Водоотведение населенных мест, санитарная охрана водных объектов. Гигиенические требования к охране поверхностных вод".

Критерии оценки загрязненности поверхностных вод для водных объектов, имеющих рыбохозяйственное значение, представлены в таблице 2.2.1.2.1.

<table>
<thead>
<tr>
<th>Ингредиенты и показатели</th>
<th>Класс опасности</th>
<th>Используемые критерии</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Лимитирующий признак вредности</td>
<td>ПДК, мг/л</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Взв. вещества</td>
<td>-</td>
<td>Общие требования</td>
</tr>
<tr>
<td>Раст. кислород</td>
<td>-</td>
<td>Общие требования</td>
</tr>
<tr>
<td>Хлориды</td>
<td>4</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>Сульфаты</td>
<td>4</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>Магний</td>
<td>-</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>ХПК</td>
<td>Усл. 4</td>
<td>Общие требования</td>
</tr>
<tr>
<td>БПК₅</td>
<td>-</td>
<td>Общие требования</td>
</tr>
<tr>
<td>Азот аммоний</td>
<td>4</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Азот нитритный</td>
<td>4</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Азот нитратный</td>
<td>3</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>Фосфаты</td>
<td>-</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>Железо общее</td>
<td>4</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Медь</td>
<td>3</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Цинк</td>
<td>3</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Свинец</td>
<td>2</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Кадмий</td>
<td>2</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Алюминий</td>
<td>4</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Марганец</td>
<td>4</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>Ртуть (мкг/л)</td>
<td>1</td>
<td>Сан.-токс.</td>
</tr>
<tr>
<td>Фенолы</td>
<td>3</td>
<td>Рыбохоз.</td>
</tr>
<tr>
<td>Нефтепродукты</td>
<td>4</td>
<td>Рыбохоз.</td>
</tr>
<tr>
<td>СПАВ</td>
<td>-</td>
<td>Токсиколог.</td>
</tr>
<tr>
<td>ДДЭ, ДДТ, Альфа и Гамма-ГХЦГ</td>
<td>1</td>
<td>Токсиколог.</td>
</tr>
</tbody>
</table>

Для оценки уровня загрязненности воды используются следующие комплексные показатели:
Удельный комбинаторный индекс загрязненности воды (УКИЗВ) – комплексный относительный показатель степени загрязненности воды, рассчитывается по наиболее распространенным в поверхностных водах загрязняющим веществам (от четырнадцати и более) и показывает их долю загрязняющего эффекта, обусловленную их одновременным присутствием, от общего загрязнения. Значение УКИЗВ может варьироваться от 1 до 16; чем больше значение, тем хуже качество воды.

Классификация степени загрязненности воды - условное разделение всего диапазона состава и свойств природной воды в условиях антропогенного воздействия на различные интервалы с постепенным переходом от «условно чистой» к «экстремально грязной» по значениям УКИЗВ с учетом ряда дополнительных факторов. В данной работе использованы следующие классы качества воды:
1-й класс - условно чистая;
2-й класс - слабо загрязненная;
3-й класс, разряд "A" - загрязненная, разряд "B" - очень загрязненная;
4-й класс, разряды "A" и "B" - грязная, разряды "B" и "Г" - очень грязная;
5-й класс - экстремально грязная.

КПЗ — критические показатели загрязненности воды. Это вещества или показатели качества воды, которые обусловливают перевод воды по степени загрязненности в классы "грязная", "очень грязная" и "экстремально грязная" на основании рассчитываемого по каждому показателю оценочного балла, учитывающего одновременно значения наблюдаемых концентраций и частоту их обнаружения.

2.2.1.3. Состояние загрязнения водных объектов

Федеральным государственным бюджетным учреждением «Приволжское УГМС» (ФГБУ «Приволжское УГМС») на территории Самарской области проводятся стационарные наблюдения за качеством воды Куйбышевского, Саратовского и Ветлянского водохранилищ, 12-ти наиболее крупных рек. Кроме того, проводится отбор и анализ проб воды при аварийных ситуациях, когда возникает угроза загрязнения поверхностных вод. За год было отобрано и проанализировано 493 плановых проб воды, 176 - дополнительных. Наблюдения за состоянием загрязнения поверхностных вод на территории области проводятся по 54 показателям.

В 2015 году вода характеризовалась как:
- «загрязненная» – Куйбышевское и Саратовское вдхр. (г.о.Тольятти и Сызрань, район впадения р.Чапаевка);
- «очень загрязненная» – вдхр. Саратовское (г.о.Самара), р.Самара, р.Съезжая, р.Большой Кинель, р.Безенчук;
- «грязная» – р.Сок, р.Сургут, р.Кондурча, Ветлянское водохранилище, р.Чапаевка, р.Криуша, р.Крымза, р.Чагра;
- «экстремально грязная» – р.Падовка.

В таблице приведены классы качества воды малых рек Самарской области:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Куйбышевское водохранилище</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. г.о.Тольятти</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. г.о.Тольятти</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. г.о.Самара</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. устье р.Чапаевка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. г.о.Сызрань</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Реки Самарской области
В 2015 году зарегистрирован 21 случай высокого загрязнения (ВЗ) и 4 случая экстремально высокого загрязнения (ЭВЗ) в воде рек:
- Ветлянское вдхр. – 1 случай ВЗ соединениями марганца;
- р.Чагра – 1 случай ВЗ соединениями марганца;
- р.Падовая – 4 случая ВЗ (сульфиды и сероводород, ХПК, марганец, БПК5) и 2 ЭВЗ (содержание кислорода и азот аммонийный);
- р.Самара - 1 случай ВЗ соединениями марганца;
- р.Чапаевка - 14 случаев ВЗ (азот аммонийный, БПК5) и 2 случая ЭВЗ соединениями марганца.

Расположение пунктов наблюдений за загрязнением воды Куйбышевского и Саратовского водохранилищ, а также притоков представлены на картограмме 2.3.1.

Куйбышевское водохранилище
Объем Куйбышевского водохранилища при нормальном подпорном горизонте (НПГ) равен 58 км³, длина распространения по р.Волга 650 км, максимальная ширина 27 км. Негативное влияние на состояние воды Куйбышевского водохранилища оказывали предприятия жилищно-коммунального хозяйства, энергетической и нефтехимической промышленности, сельского хозяйства.

Пункт наблюдений в районе г.о.Тольятти является замыкающим на Куйбышевском водохранилище. Наблюдения за качеством воды ведутся в трех створах:
1) в черте н.п.Климовка, 30 км выше города;
2) 0,5 км ниже сброса сточных вод Северного промузла, 22 км выше города;
3) в черте г.о.Тольятти, 1,3 км выше Жигулевской ГЭС.

Качество воды во всех створах улучшилось в пределах класса, вода характеризовалась как "загрязненная" 3 А класса.

Характерными загрязняющими веществами воды, по которым повторяемость превышения 1 ПДК составляла 70 и 87%, являлись трудноокисляемые органические вещества (по ХПК) и соединения меди.

Для воды водохранилища характерен низкий уровень загрязненности фенолами, трудноокисляемыми органическими веществами, соединениями меди и марганца (1-2 ПДК), максимальные значения были равны 6; 4; 5 и 5 ПДК соответственно. Наибольшие значения наблюдались: фенолов и марганца – в фоновом створе, ХПК - во втором
контрольном, меди – в первом контрольном.
Среднегодовые концентрации остальных определяемых ингредиентов не превышали установленную норму. Их максимальные концентрации превышали норму в 1 – 3 раза.

Минимальная и максимальная концентрации сульфатных ионов были равны 51 и 97 мг/л соответственно. Среднее за год содержание взвешенных веществ составляло 2 мг/л; их максимальная концентрация составляла 6 мг/л. Минимальное содержание растворенного кислорода зафиксировано, как и в прошлом году, в первом контрольном створе - 7,4 мг/л (в 2014г. - 6,9 мг/л).

По данным обследований в 2015 году цветность волжской воды в контрольных створах государственной наблюдательной сети на Куйбышевском вдхр. в районе г.о.Тольятти изменялась в диапазоне 14-50 град, максимальное значение регистрировалось в августе.

Саратовское водохранилище
Саратовское водохранилище имеет объем при нормальном подпорном горизонте (НПГ) 12,9 км³, длину распространения подпора от плотины 357 км, наименьшую ширину 25 км. Качество воды водохранилища формируется под влиянием транзитного переноса загрязняющих веществ из Куйбышевского водохранилища и сброса недостаточно очищенных и неочищенных сточных вод крупных предприятий Самарской области, городских очистных сооружений, поверхностного стока с сельхозугодий, а также ливневых стоков с селитебной территории городских округов Тольятти, Самара и Сызрань.

Ниже приводится описание качества воды Саратовского водохранилища в пунктах наблюдений ФГБУ «Приволжское УГМС» в гидрологической последовательности.

Качество воды водохранилища в районе г.о.Тольятти контролируется в двух створах:
1) 11,5 км ниже плотины Жигулевской ГЭС;
2) в черте н.п.Зольное, 12 км ниже города.

Качество воды водохранилища в районе г.о.Тольятти в отчетном году в целом по пункту наблюдения не изменилось, вода характеризовалась как "загрязненная" 3 А класса качества.

Характерными загрязняющими веществами являются трудноокисляемые органические вещества (по ХПК) и соединения меди. Превышение 1 ПДК этими веществами зарегистрировано в 100 и 50 % соответственно.

С 3 до 2 ПДК снизилась среднегодовая концентрация соединений меди, максимальная концентрация в фоновом створе достигала 10 ПДК.

Среднее за год содержание в воде трудноокисляемых органических веществ, как и в прошлом году, превышало норматив в 2 раза, максимальное (4 ПДК) зафиксировано в контрольном створе.

Абсолютные значения концентраций сульфатных ионов определялись в пределах 33-91 мг/л. Среднегодовое содержание взвешенных веществ составляло 2 мг/л, максимальная концентрация - 8 мг/л. Кислородный режим в течение года был удовлетворительным. Минимальное содержание растворенного в воде кислорода в фоновом створе составляло 7,2 мг/л (в 2014г. – 6,1 мг/л). Цветность воды водохранилища в течение года изменилась в диапазоне 16-51 град, максимальное значение фиксировалось в мае.

Контроль качества воды водохранилища в районе г.о.Самара проводится в двух створах:
1) 0,5 км выше гор. водозабора, в районе Студеного оврага;
2) в черте г.о.Самара, 1 км ниже сброса ГОС.

Качество воды водохранилища в районе г.о.Самара в целом по пункту наблюдения не изменилось. Во всех створах вода оценивалась как "очень загрязненная" 3 Б класса.
Характерными загрязняющими веществами являются трудноокисляемые органические вещества (по ХПК), соединения меди и марганца. Повторяемость случаев превышения 1 ПДК составляла 50-100%.

Снизилась среднегодовая концентрация соединений меди (с 3 до 1 ПДК), марганца – сохранялась на уровне 2 ПДК. Максимальные концентрации зафиксированы в фоновом створе и составляли по 5 ПДК.

Среднее за год содержание в воде трудноокисляемых органических веществ, как и в прошлом году, превышало норматив в 2 раза, максимальное (4 ПДК) зафиксировано в контрольном створе.

Уровень загрязнения воды фенолами сохранился (1 ПДК), максимальное значение составляло 4 ПДК (контрольный створ).

Содержание сульфатных ионов было в пределах 51 – 102 мг/л. Максимальное содержание взвешенных веществ снизилось с 20 до 10 мг/л. Кислородный режим в течение года был удовлетворительным. Минимальное содержание растворенного кислорода наблюдалось в фоновом створе – 7,1 мг/л (в 2014г. – 6,0 мг/л).

Цветность воды водохранилища в течение года изменялась в диапазоне 20-57 град, максимальное значение фиксировалось в июне.

Наблюдение за качеством воды водохранилища в районе впадения р.Чапаевки проводится в створе: 1 км ниже устья реки, на уровне пристани Лбище.

Качество воды водохранилища в месте впадения р.Чапаевка улучшилось в пределах класса - в 2015 году вода характеризовалась как "загрязненная" 3 А класса (в 2014 году – «очень загрязненная» 3 Б класса качества).

Характерными загрязняющими веществами являются трудноокисляемые органические вещества (по ХПК) и соединения меди. Повторяемость случаев превышения 1 ПДК этими показателями составляла 100 и 50% соответственно.

Уровень загрязнения воды водохранилища легко- и трудноокисляемыми органическими веществами по кратности превышений ПДК, как и в 2014 году, оценивался как низкий (1-2 ПДК), наибольшие значения также не превышали 1-3 ПДК.

Снизилось загрязнение воды соединениями меди (с 3 до 2 ПДК), марганцем – сохранилось на уровне 1 ПДК. Максимальные концентрации составляли 6 и 2 ПДК соответственно.

Минимальная и максимальная концентрация сульфатных ионов были равны 58 и 106 мг/л соответственно. Максимальное содержание взвешенных веществ составило 11 мг/л (в 2014г. - 5 мг/л), минимальное содержание растворенного кислорода было равно 6,9 мг/л (в 2014г. - 8,0 мг/л). Цветность воды водохранилища в течение года изменялась в диапазоне 26-45 град, максимальное значение фиксировалось в июле.

Контроль качества воды водохранилища в районе города Сызрань проводится в двух створах:

1) в черте г.о.Октябрьск, 7,5 км выше г.о.Сызрань;
2) в черте г.о.Сызрань, 12 км ниже пристани г.о.Сызрань.

Качество воды водохранилища в целом в районе г.о.Сызрань не изменилось. Во всех створах вода оценивалась как "загрязненная" 3 А класса.

Характерными загрязняющими веществами являются трудноокисляемые органические вещества (по ХПК) и соединения меди, повторяемость случаев превышения 1 ПДК этими веществами составляла 100 и 55% соответственно.

Уровень загрязнения воды водохранилища трудноокисляемыми органическими веществами по кратности превышений ПДК, как и в прошлом году, оценивался как низкий (1-2 ПДК). Средняя концентрация была равна 2 ПДК, максимальная – 4 ПДК (контрольный створ). С 4 до 1 ПДК снизилось загрязнение воды соединениями меди, максимальная концентрация составляла 6 ПДК (контрольный створ).

Среднее за год содержание взвешенных веществ составляло 4 мг/л, их максимальная концентрация равна 9 мг/л. Содержание сульфатных ионов было в пределах
52-112 мг/л (в 2014г. - 62-78 мг/л). Кислородный режим в течение года был благоприятным. Цветность воды водохранилища в течение года изменялась в диапазоне 21-57 град, максимальное значение фиксировалось в июне.

Малые реки Самарской области

Бассейн Саратовского водохранилища характеризуется довольно густой речной сетью к северу от самого крупного притока - р.Самара; к югу от него водотоки сравнительно редки и маловодны. Многие, даже сравнительно крупные реки, в летнюю межень на отдельных участках пересыхают. Отдельные малые водотоки зимой перемерзают.

Из основных загрязнителей воды притоков преобладали соединения марганца, среднегодовая концентрация которых в целом по притокам не изменилась (5 ПДК), максимальная наблюдалась в р.Чапаевка – 124 ПДК - критерий ЭВЗ. Превышение 10 ПДК марганцем составляло – 14%; 30 ПДК – 10%; 50 ПДК – 1%.

Отмечается загрязнение воды водотоков соединениями меди, среднее содержание этого ингредиента сохранилось на уровне 2 ПДК, максимальная концентрация превышала норму в 9,7 раз в воде р.Падовка.

Содержание в воде азота нитритного, как и в 2014г., не превышало 1 ПДК, максимальная концентрация зарегистрирована в р.Падовка и составляла 6 ПДК.

В 2015г. отмечалось снижение загрязнения воды реки сульфидами и сероводородом от 1 ПДК до уровня ниже ПДК, максимальная концентрация достигала критериев высокого загрязнения и превышала норму в 37 раз (р.Падовка).

Уровень загрязнения воды сульфатами, легко- и трудноокисляемыми органическими веществами, находился в пределах 1-2 ПДК, максимальные концентрации составляли 8 ПДК (р.Падовка); 15 ПДК (ВЗ – в р.Чапаевка) и 14 ПДК (ВЗ – в р.Падовка) соответственно. Число превышений 10 ПДК легкоокисляемыми органическими веществами составляло 2%.

Для большинства водотоков водохранилища характерен сульфатно-магниевый состав речной воды повышенной минерализации. Сумма главных ионов в воде рек варьировала в пределах 185-2875 мг/л (в 2014г. - 126-1770 мг/л). Наиболее высокая минерализация свойственна для реки Падовки.

Среднегодовое содержание взвешенных веществ составляло 11 мг/л (в 2014г. - 18 мг/л), максимальная концентрация 125 мг/л (в 2014г. - 154 мг/л) зарегистрирована в воде р.Чапаевка. Среднегодовое содержание хлорорганических пестицидов не достигало
Кислородный режим в течение года был удовлетворительным, минимальное содержание растворенного кислорода (0,30 мг/л) на уровне ЭВЗ наблюдалось в р.Падовка (в 2014г. - в р.Падовка – 1,77 мг/л - критерий ВЗ).

Река Сок

Качество воды реки в целом ухудшилось, вода оценивалась как "грязная" 4 А класса (в 2014г. - "очень загрязненная" 3 Б). Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения меди, магния, кальция и марганца. Как и в прошлом году, река характеризовалась высоким уровнем минерализации.

Качество воды р.Сок у н.п.Сергиевск не изменилось. В обоих створах вода оценивалась как "очень загрязненная" 3 Б класса.

Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения меди, марганца, кальция и магния. Повторяемость случаев превышения предельно допустимой концентрации этими показателями составляла 60 – 100%. Для водоема характерен повышенный показатель минерализации, максимальная величина минерализации достигала 1407 мг/л с повторяемостью случаев превышения норматива 80%.

Уровень критического показателя загрязненности, как и в прошлом году, был достигнут по сульфатам. Загрязненность воды сульфатами выросла с 4 до 5 ПДК, максимальная концентрация составляла 6 ПДК (фоновый створ). Превышение норматива сульфатами отмечено в каждой пробе.

Сохранилось загрязнение воды соединениями марганца (7 ПДК) и соединениями
Содержание в воде трудноокисляемых органических веществ (по ХПК) в 2015 году выросло с 1 до 2 ПДК, максимальная концентрация была на уровне 2 ПДК.
Соединения магния и кальция выявились как характерные загрязняющие вещества воды реки, но их средние и максимальные концентрации, как и в прошлом году, находились в пределах 1-2 ПДК.
Среднегодовое содержание взвешенных веществ составляло 12 мг/л, максимальное - 24 мг/л (в 2014г. – 137 мг/л).
Кислородный режим в течение года был удовлетворительным, минимальное содержание зарегистрировано в фоновом створе равно 7,2 мг/л (в 2014г. – 9,4 мг/л).
Качество воды в низовьях реки Сок у н.п.Красный Яр ухудшилось и вода характеризовалась как "грязная" 4 А класса (в 2014г. – "очень загрязненная").
Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения магния и марганца. Повторяемость превышений норматива данными ингредиентами была 60 - 100%. Река характеризовалась высоким уровнем минерализации с повторяемостью превышения норматива 60%.
Сульфаты выявлены как критический показатель загрязненности воды. Среднее содержание этих веществ снизилось с 5 до 3 ПДК, максимальная концентрация составляла 6 ПДК.
Загрязнение воды соединениями марганца сохранилось на уровне 6 ПДК, максимальное значение составляло 14 ПДК.
Трудноокисляемые органические вещества, соединения магния и кальция выявлены как характерные загрязняющие вещества воды реки, но их средние и максимальные концентрации, как и в прошлом году, находились в пределах 1-3 ПДК.
Среднегодовая концентрация взвешенных веществ составляла 27 мг/л (в 2014г. – 37 мг/л).
Минимальное содержание растворенного кислорода зафиксировано в сентябре и составляло 6,6 мг/л (в 2014г. – 3,7 мг/л).

Река Сургут

Мониторинг загрязнения воды реки проводится в одном створе «1 км выше н.п.Серноводск». Качество воды реки, по сравнению с 2015 годом, не изменилось, вода характеризовалась как "грязная" 4 А класса.

Характерными загрязняющими веществами являлись сульфаты, легко- и трудноокисляемые органические вещества (по БПК₅, ХПК), азот нитриный, соединения кальция, марганца и магния. Повторяемость превышений норматива данными ингредиентами была 67 - 100%. Река характеризовалась высоким уровнем минерализации с повторяемостью превышений норматива 100%.

Сульфаты и соединения марганца выявлены как критические показатели загрязненности воды. Среднее содержание сульфатов выросло с 5 до 6 ПДК, соединений марганца – сохранилось на уровне 10 ПДК. Максимальные концентрации этих веществ составляли 8 и 21 ПДК соответственно. Превышение 10 ПДК соединениями марганца зарегистрировано в 33% проб.
Легко- и трудноокисляемые органические вещества, азот нитриный, соединения магния и кальция выявлены как характерные загрязняющие вещества воды реки, их средние и максимальные концентрации, как и в прошлом году, находились в пределах 1-3 ПДК.

Минимальное содержание растворенного в воде кислорода (6,4 мг/л) в течение года не опускалось ниже нормированного значения (в 2014г. - 8,4 мг/л).

Река Кондурча

Качество воды реки в створе «в черте н.п.Красный Яр» ухудшилось и вода характеризовалась как "грязная" 4 А класса (в 2014г. – "очень загрязненная" 3 Б). Наиболее характерными загрязняющими веществами водного объекта являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения меди, марганца и магния (повторяемость случаев превышения предельно допустимой концентрации составляла 60 – 100%). Река характеризовалась высоким уровнем минерализации с превышением норматива в 80% проб.

Сульфаты являются критическим показателем загрязненности воды. Среднее содержание сульфатов сохранилось на уровне прошлого года - 4 ПДК, наибольшая концентрация составляла 6 ПДК.

Загрязнение воды соединениями меди выросло с менее нормы до 2 ПДК, соединения марганца – снизилось с 8 до 6 ПДК. Максимальные значения этих ингредиентов составляли 7 и 11 ПДК соответственно. Повторяемость случаев превышения 10 ПДК соединениями марганца составляла 20% от всех проб.

Хотя трудноокисляемые органические вещества, соединения магния выявлены как характерные загрязняющие вещества воды реки, их средние и максимальные концентрации, как и в прошлом году, находились в пределах 1-2 ПДК.

Максимальная концентрация взвешенных веществ составляла 35 мг/л (в 2014г. – 20 мг/л). Минимальное содержание растворенного кислорода составляло 8,2 мг/л (в 2014г. – 7,0 мг/л).

Река Самара

Река Самара является левобережным притоком р.Волги. Берет начало на северных отрогах Общего Сырта в 2,5 км восточнее н.п.Гнездиловка м. р. Переволоцкий Оренбургской области и впадает в Саратовское водохранилище слева у южной части г.о.Самары. Протяженность водотока – 594 км. Прилегающая местность – волнистая открытая равнина. Русло реки слабоизвилистое, разветвленное рядом мелких островов, слабодеформирующееся. Долина реки – пойменная, склоны сложены супесчаными и суглинистыми почвами.

Мониторинг загрязнения воды р.Самара проводится в 2-х пунктах наблюдений на территории Самарской области. Качество воды реки в целом не изменилось, вода характеризовалась как "очень загрязненная" 3 Б класса.
Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества, азот нитритный, соединения меди и марганца.

Контроль качества воды реки Самары, в среднем ее течении, в пункте наблюдений у н.п. Алексеевка проводится в двух створах:
1) 1 км выше н.п. Алексеевка;
2) 3,8 км ниже н.п. Алексеевка.

Качество воды реки Самары, в районе н.п. Алексеевка не изменилось и вода оценивалась как "очень загрязненная" 3 Б класса.

К характерным загрязняющим веществам относились сульфаты, трудноокисляемые органические вещества (по ХПК), соединения меди и марганца (повторяемость случаев превышения нормативов составляла 58-100%).

В отчетном году среднее содержание соединений меди сохранилось на уровне 2 ПДК, марганца – снизилось с 5 до 4 ПДК, их максимальные концентрации зафиксированы в фоновом створе и составляли 7 и 9 ПДК соответственно.

Средняя и максимальная концентрации сульфатных ионов в 2015 году сохранились на уровне 2 ПДК.

Среднее содержание трудноокисляемых органических веществ в обоих створах не изменилось и превышало норму в 2 раза, максимальное – в 3 раза, с превышением установленных нормативов в 100% проб.

Среднегодовое содержание взвешенных веществ составляло 13 мг/л, максимальная концентрация составляла 75 мг/л (в 2014г. - 154 мг/л). Минимальное содержание растворенного кислорода зарегистрировано в контрольном створе – 5,4 мг/л (в 2014г. - 6,8 мг/л).

В г.о. Самары в нижнем течении в пункте наблюдений у г.о. Самары ведется в двух створах:
1) 9 км выше автодорожного моста;
2) 0,1 км выше автодорожного моста.

Качество воды реки Самары в черте г.о. Самара ухудшилось на один класс до "грязная" 4 А класса (в 2014г. – "очень загрязненная" 3 Б). В обоих створах вода характеризовалась как "очень загрязненная" 3 Б класса. Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), азот нитритный, соединения меди и марганца (повторяемость случаев превышения предельно допустимых концентраций составляла 68-100%).

В 2015г. отмечалось небольшое снижение содержания в воде соединений марганца – с 8 до 7 ПДК, максимальная концентрация в мае в контрольном створе достигала уровня высокого загрязнения воды (ВЗ) - 34 ПДК. Повторяемость случаев превышения 10 ПДК этим ингредиентом составляла 17%, 30 ПДК – 2%.

С 1 до 2 ПДК выросли среднегодовые концентрации соединений меди и азота нитритного, максимальные концентрации наблюдались в фоновом створе и составляли 5 и 2 ПДК соответственно.

Уровень загрязненности воды сульфатами и трудноокисляемыми органическими веществами не изменился, средние и максимальные величины находились в пределах 2-3 ПДК.

Минимальное содержание растворенного в воде кислорода в контрольном створе составляло 5,1 мг/л (в 2014г. - 5,0 мг/л).

Река Съезжая

Река Съезжая является левобережным притоком р. Самара. Протяженность реки - 107 км. Прилегающая...
местность представляет собой слабоволнистую равнину, слаборассеченную оврагами и балками. Долина реки слабовыраженная. Слоны долины очень пологие. Пойма реки двухсторонняя. Русло реки умеренно - извилистое. Дно и берега реки сложены песчаными и супесчанными грунтами.

Наблюдения за уровнем загрязнения воды реки осуществлялись в одном створе «в черте п.п.Максимовка». В отчетном году качество воды реки не изменилось и вода характеризовалась как "очень загрязненная" 3 Б класса.

Характерными загрязняющими веществами водного объекта являлись сульфаты, легко- и трудноокисляемые органические вещества (по БПК5 и ХПК), соединения меди и марганца, с повторяемостью случаев превышений предельно допустимых концентраций 60-100%.

Снизилась среднегодовая концентрация соединений марганца с 6 до 5 ПДК, максимальная концентрация была равна 13 ПДК. Чистота случаев превышения 10 ПДК соединениями марганца составляла 20%.

Загрязненность воды сульфатами, легко- и трудноокисляемыми органическими веществами и соединениями меди, как и в 2014 году, не превышала 1 - 2 ПДК, максимальные концентрации превышали норму в 2 - 4 раза.

Максимальная концентрация взвешенных веществ снизилась и составляла 14 мг/л (в 2014г. – 148 мг/л). Минимальное содержание растворенного кислорода было равно 6,3 мг/л (в 2014г. – 4,2 мг/л).

Ветлянское водохранилище

Водохранилище является водоемом речного типа, представляющее собой расширенный участок реки Ветлянки (левобережный приток р.Съезжая). Водохранилище - сезонного регулирования, предназначено для орошения. Объем водохранилища при нормальном подпорном горизонте (НПГ) 0,27 км3, площадь зеркала равна 8,8 км2. Длина водохранилища около 10 км, наибольшая ширина 1 км, средняя глубина 6 м. Прилегающая местность – равнина с отдельными холмами, покрытая травой и мелким кустарником. Берега пологие. Дно водохранилища сложено песчано-иллистыми почвами.

Наблюдения за загрязнением воды проводятся в одном створе «в черте п.п.Ветлянка». Качество воды водохранилища в отчетном году ухудшилось и вода характеризовалась как "грязная" 4 А класса (в 2014г. - "очень загрязненная" 3 Б).

Характерными загрязняющими веществами водного объекта являлись сульфаты, хлориды, легко- и трудноокисляемые органические вещества (по БПК5, ХПК), соединения меди, цинка, магния и марганца, с повторяемостью концентраций выше 1 ПДК 50-100%. Река характеризовалась высоким уровнем минерализации с превышением норматива в 100% проб.

По сравнению с прошлым годом, снизилось содержание соединений марганца с 30 до 10 ПДК. Наибольшее значение в феврале достигло уровня высокого загрязнения (ВЗ) и составило 31 ПДК. Повторяемость случаев превышения 10 и 30 ПДК марганцем составляла 25%.

На уровне прошлого года сохранилась среднегодовая концентрация соединений магния (2 ПДК). Максимальная концентрация составляла 3 ПДК.

Содержание в воде хлоридов, легкоокисляемых органических веществ, соединений меди и цинка было на уровне 1 ПДК. Максимальные концентрации находились в пределах 1 – 3 ПДК.

Уровень загрязнения воды водохранилища сульфатами вырос с 2 до 3 ПДК, трудноокисляемых органических веществ - сохранялся на уровне 2014г. (3 ПДК). Максимальные концентрации этих веществ составляли 4 ПДК.
Максимальное содержание взвешенных веществ составляло в отчетном году 10 мг/л (в 2014г. – 14 мг/л). Кислородный режим в течение года был удовлетворительным. Минимальное содержание растворенного кислорода составляло 5,9 мг/л (в 2014г. - 5,3 мг/л).

Река Большой Кинель

Река Большой Кинель является правобережным притоком р.Самара. Протяженность водотока – 422 км. Прилегающая местность – средневозрастная с холмистой, покрытая лугово-степной растительностью, с чередованием лиственного леса. Долина реки пойменная, склоны умеренно рассечены оврагами. Пойма двухсторонняя, пересечена старыми, покрыта лесом. Русло реки слабо извилистое, неразвитое, незначительно деформирующееся, застраивается водной растительностью, сложено супесчаными почвами. Качество воды реки Большой Кинель, по сравнению с прошлым годом, не изменилось, вода характеризовалась как «очень загрязненная» 3 Б класса.

Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения магния и марганца.

Определение уровня загрязнения воды реки Большой Кинель в пункте наблюдений у г.о.Отрадный осуществляется в двух створах:
1) 1 км выше г.о.Отрадный;
2) 1 км ниже г.о.Отрадный.

Качество воды в пункте наблюдений у г.о.Отрадный не изменилось и вода характеризовалась как "очень загрязненная" 3 Б класса.

Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения магния и марганца. Частота превышения 1 ПДК варьировала от 90 до 100%.

Выросла загрязненность воды соединениями марганца с 4 до 6 ПДК, максимальная концентрация (14 ПДК) зарегистрирована в контрольном створе. Частота превышения 10 ПДК соединениями марганца составляла 30%.

На уровне прошлого года сохранились среднегодовые концентрации сульфатов (3 ПДК), трудноокисляемых органических веществ (2 ПДК), соединений меди и магния (1 ПДК), максимальные были в пределах 1-3 ПДК.

Максимальное содержание взвешенных веществ составляло 65 мг/л (в 2014г. - 61 мг/л). Кислородный режим в течение года был удовлетворительным, минимальное содержание растворенного в воде кислорода зарегистрировано в контрольном створе и составляло 6,5 мг/л (в 2014г. - 5,5 мг/л).

Контроль за качеством воды реки Большой Кинель в пункте наблюдений у н.п.Тимашево организован на двух створах:
1) 1 км выше н.п.Тимашево;
2) 1,5 км ниже н.п.Тимашево.

Качество воды реки в пункте наблюдений у н.п.Тимашево не изменилось и вода оценивалась как "загрязненная" 3 А класса.

Характерными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), соединения магния и марганца. Повторяемость случаев превышения 1 ПДК этими показателями составляла 80-100%. Река характеризовалась высоким уровнем минерализации.

Выросла среднегодовая концентрация соединений марганца с 4 до 5 ПДК, максимальная концентрация достигала 11 ПДК (контрольный створ). Повторяемость случаев превышения 10 ПДК соединениям марганца составляла 10%.
На уровне прошлого года сохранились среднегодовые концентрации трудноокисляемых органических веществ (2 ПДК), сульфатов (3 ПДК) и соединений магния (1 ПДК), максимальные концентрации этих ингредиентов были в пределах 1-3 ПДК.
Максимальное содержание взвешенных веществ составляло 57 мг/л (в 2014 г. – 23 мг/л). Кислородный режим в течение года был удовлетворительным, минимальное содержание растворенного кислорода было зафиксировано в контрольном створе - 6,3 мг/л (в 2014 г. - 4,6 мг/л).

Река Падовка

Является правобережным притоком р. Самара. Русло реки извилистое, берега обрывистые, дно реки сложено сулинками, местами иловое, берега заросшие кустарником.

Река Падовка - один из наиболее загрязненных водных объектов в бассейне р. Волги. В отчетном году качество воды реки ухудшилось на один класс, и вода характеризовалась как "экстремально грязная" 5 класса (в 2014 г. – "грязная" 4 Б).

Характерными загрязняющими веществами являлись сульфаты, легко- и трудноокисляемые органические вещества (по БПК₅, ХПК), азот аммонийный, азот нитритный, фосфаты, соединения меди, магния и марганца. Частота случаев превышения 1 ПДК этими ингредиентами составляла 50 - 100%.

Критическими показателями загрязнения воды реки являлись растворенный в воде кислород, легко- и трудноокисляемые органические вещества, азот аммонийный, соединения марганца.

В 2015 году зафиксировано снижение среднегодового содержания в воде реки сульфидов и сероводорода (с 20 до 8 ПДК). Максимальное значение (37 ПДК) в ноябре достигало уровня высокого загрязнения (ВЗ). Повторяемость случаев превышения 10 и 30 ПДК этими показателями составляла по 20%.

Выросли с 2 до 3 ПДК среднегодовые концентрации азота нитритного и сульфатов. Максимальные концентрации составляли 6 и 8 ПДК соответственно.

С 3 до 12 ПДК (уровень ВЗ) выросло загрязнение воды азотом аммонийным, с 6 до 9 - соединениями марганца. Максимальные значения этих ингредиентов составляли 55 ПДК (ЭВЗ) и 32 ПДК (ВЗ) соответственно. В октябре 2015 года было зафиксировано 1 случай высокого загрязнения воды реки соединениями марганца и 1 случай экстремально высокого загрязнения азотом аммонийным. Повторяемость случаев превышения 10; 30 и 50 ПДК азотом аммонийным составляла 17%; соединениями марганца превышение 10 ПДК – 33%, 30 ПДК – 17%.

Выросло содержание в воде легкоокисляемых органических веществ с 1 до 3 ПДК; трудноокисляемых органических веществ – с 3 до 5 ПДК; фенолов – с 2 до 3 ПДК.

Наибольшие значения легко- и трудноокисляемых органических веществ достигали критериев высокого загрязнения (ВЗ) – 11 и 14 ПДК соответственно, фенолов – 16 ПДК. Повторяемость случаев превышения 10 ПДК этими ингредиентами составляла по 17%.

Среднегодовое содержание фосфатов также выросло с 1 до 3 ПДК, максимальная концентрация составляла 9,7 ПДК.

Загрязнение воды реки соединениями магния и соединениями меди сохранилось на уровне прошлого года. Средние и максимальные концентрации были в пределах 1-2 ПДК.

Река характеризуется низким содержанием растворенного в воде кислорода, в октябре отмечено минимальное содержание кислорода (уровень ЭВЗ) – 0,30 мг/л с глубоким дефицитом кислорода в 17% проб (в 2014 г. -1,77 мг/л).
Река Чапаевка

Река Чапаевка является левобережным притоком р. Волги. Она берет начало у н.п. Николаевка м.р. Алексеевский и впадает в Саратовское водохранилище в м.р. Волжский. Создание Саратовского водохранилища изменило гидрологические особенности района. Влияние подпора водохранилища прослеживается в реке на расстоянии до 50 км. Половодье на реке стало кратким и сократилось по объему примерно на 40-50%.

Для защиты части города от возможных наводнений, связанных с сооружением водохранилища, была построена дамба, в результате чего сток реки Чапаевки был отведен в р.Чернавку. В настоящее время приустьевая часть реки представляет собой небольшой залив, шириной от 35 до 60 м, а на "выходе" - более 100 м, глубины которого (более 2-5 м) позволяют использовать акваторию для судоходства.

Протяженность водотока – 298 км. Прилегающая местность – открытая, волнистая равнина. Русло реки слабо извилистое, слабо деформирующееся, зарастае водной растительностью, сложено суглинистыми почвами.

Наблюдения за загрязнением воды реки осуществляются в двух створах:
1) 1 км выше г.о. Чапаевск;
2) 1 км ниже г.о. Чапаевск.

В отчетном году качество воды реки в общем по пункту не изменилось и вода оценивалась как "грязная" 4 Б класса.

Характерными загрязняющими веществами являлись сульфаты, легко- и трудноокисляемые органические вещества (по БПК₅ и ХПК), азот аммонийный, азот нитритный, соединения меди и марганца (повторяемость случаев превышения 1 ПДК составляла 60-100%). БПК₅, азот аммонийный и соединения марганца в 2015 году являлись критическими показателями загрязнения воды реки.

В отчетном году среднегодовая концентрация соединений марганца выросла с 14 до 15 ПДК. Максимальная концентрация в фоновом створе превышала норму в 124 раза (ЭВЗ). Повторяемость случаев превышения 10 ПДК соединениями марганца составляла 53%; 30 и 50 ПДК – 7%, 100 ПДК - 3%. В 2015 году в воде реки зафиксировано 2 случая ЭВЗ соединениями марганца (январь, февраль).

Среднегодовая концентрация легкоокисляемых органических веществ сохранилась на уровне 4 ПДК, азота аммонийного – выросла с 1 до 4 ПДК. Максимальные концентрации достигали уровня высокого загрязнения (ВЗ), зафиксированы в контрольном створе (15 и 11 ПДК соответственно). Повторяемость случаев превышения 10 ПДК легкоокисляемыми органическими веществами составляла 12%, азотом аммонийным – 4%. В 2015 году было зафиксировано 13 случаев высокого загрязнения легкоокисляемыми органическими веществами (май, июль, ноябрь) и один случай ВЗ азотом аммонийным (май).

Повысилась среднегодовая концентрация азота нитритного и сульфатов. Максимальные концентрации азота нитритного наблюдались в контрольном створе (6 ПДК), сульфатов – в фоновом (5 ПДК).

Увеличились среднегодовые концентрации соединений меди (с 1 до 2 ПДК) и трудноокисляемых органических веществ (с 3 до 4 ПДК), максимальные значения этих веществ зафиксированы в контрольном створе и составляли 7 и 9,9 ПДК соответственно.

Обнаружено присутствие хлорорганических пестицидов. Среднегодовые и максимальные концентрации, как и в прошлом году, не превышали усл. ПДК. В этом створе с начала 90-х годов прослеживается тенденция снижения среднегодовых концентраций хлорорганических пестицидов. Производство пестицидов заводом химикатов давно прекратилось, а загрязнение воды, донных отложений, почв стойкими
органическими соединениями осталось. Накопление хлорорганических пестицидов в донных отложениях и почве несомненно вызывает вторичное загрязнение поверхностных вод.

Среднегодовое содержание взвешенных веществ составляло 23 мг/л. Максимальная концентрация отмечена в контрольном створе - 125 мг/л (в 2014г. - 126 мг/л).

Минимальное содержание растворенного кислорода наблюдалось в фоновом створе и было равно 5,2 мг/л (в 2014г. - 6,2 мг/л).

Река Кривуша

После наполнения Саратовского водохранилища в 1968 году, русло реки было заполнено и в настоящее время является левобережной протокой (ерик) водохранилища, т.к. впадает в него через устьевой участок р.Чапаевки. Прилегающая местность – волнистая равнина. Русло реки извилисто, сложено песчано – глинистыми почвами.

Контроль за уровнем загрязнения воды реки проводится в пункте наблюдения «г.о.Новокуйбышевск» в двух створах:

1) 1 км выше г.о.Новокуйбышевск;
2) 2 км ниже г.о.Новокуйбышевск.

Качество воды реки ухудшилось на один класс и вода оценивалась как "грязная" 4 A класса (в 2014г. - "очень загрязненная" 3 Б).

Характерными загрязняющими веществами являлись трудноокисляемые органические вещества (по ХПК), соединения меди и марганца с повторяемостью концентраций выше 1 ПДК 50-100%.

С 8 до 9 ПДК выросла среднегодовая концентрация соединений марганца, максимальная концентрация зафиксирована в фоновом створе - 22 ПДК. Превышение 10 ПДК марганцем обнаружено в 40% от всех проб.

Состоялось на уровне прошлого года содержание трудноокисляемых органических веществ (2 ПДК), максимальная концентрация была равна 3 ПДК.

Значения среднегодовых концентраций соединений меди, легкоокисляемых органических веществ и азота аммонийного были на уровне 1 ПДК, максимальные концентрации находились в пределах 3-5 ПДК.

Содержание сульфатных ионов изменялось от 64 до 119 мг/л (в 2014г. - от 64 до 76 мг/л). Максимальное содержание взвешенных веществ составляло 73 мг/л (в 2014г. – 16 мг/л).

Кислородный режим в течение года был удовлетворительным, минимальное содержание растворенного кислорода было равно 6,6 мг/л (в 2014г. – 5,5 мг/л).

Река Безенчук

Река Безенчук является левобережным притоком р.Волга, протяженностью 78 км. Русло реки сильно извилисто. Русло сложено из суглинков и суцесей средней плотности. Контроль за качеством воды реки организован в створе "1 км выше н.п. Васильевка".

В отчетном году качество воды реки улучшилось на один класс и вода оценивалась как "очень загрязненная" 3 Б класса (в 2014г. - "грязная" 4 A).

Основными загрязняющими веществами являлись сульфаты, трудноокисляемые органические вещества (по ХПК), фосфаты, соединения меди и марганца (повторяемость случаев превышения предельно допустимых концентраций составляла 60-100%).

Снизилось значение среднегодовой концентрации соединений марганца с 20 до 6 ПДК, максимальная концентрация составляла 12 ПДК. Превышение 10 ПДК марганцем составляло 20%.
В отчетном году среднегодовая концентрация фосфатов выросла с 1 до 2 ПДК, максимальная составляла 5 ПДК.

Среднегодовые концентрации остальных ингредиентов сохранились на уровне прошлого года и не превышали 2 ПДК, максимальные находились в пределах 2 - 4 ПДК. Максимальная концентрация взвешенных веществ выросла и составляла 74 мг/л (в 2014г. – 11 мг/л).

Кислородный режим в течение года был удовлетворительным, минимальное содержание растворенного кислорода составляло 6,4 мг/л (в 2014г. – 2,7 мг/л).

Река Крымза

После создания Саратовского водохранилища река Крымза является правобережным притоком водохранилища, протяженностью 50 км. Прилегающая местность – открытая, волнистая равнина, умеренно пересеченная оврагами и балками. Долина неясно выраженная. Слои пологие, незаметно сливавшиеся с прилегающей местностью, сложены супесчаными грунтами. Русло прямолинейное, супесчаное, деформирующееся, чередующееся плесами и перекатами.

Мониторинг качества воды проводится в одном створе - "в черте г.о. Сызрань".

Качество воды реки Крымзы ухудшилось на один класс и вода оценивалась как "грязная" 4 А класса (в 2014г. - "очень загрязненная" 3 Б).

Характерными загрязняющими веществами являлись сульфаты, легко- и трудноокисляемые органические вещества (по БПК5 и ХПК), азот нитритный, нефтепродукты, соединения меди и марганца. Повторяемость случаев превышения 1 ПДК составляла 80-100%.

Критическим показателем загрязненности воды являлись соединения марганца, загрязнение воды в 2015 году выросло с 8 до 9 ПДК, максимальная концентрация составляла 17 ПДК. Повторяемость случаев превышения 10 ПДК составляла 40%.

Сохранились на уровне прошлого года средние концентрации сульфатов (1 ПДК), легко- и трудноокисляемых органических веществ (2 ПДК). Максимальные концентрации этих ингредиентов не превышали 2 ПДК.

В 2015 году наблюдался рост содержания в воде азота нитритного с 1 до 2 ПДК, максимальная величина составляла 3 ПДК.

Уровень загрязнения воды соединениями меди снизился с 4 до 3 ПДК, максимальная концентрация была равна 5 ПДК.

Максимальная концентрация взвешенных веществ составляла 55 мг/л (в 2014г. – 13 мг/л). Минимальное содержание растворенного в воде кислорода составляло 7,2 мг/л (в 2014г. – 9,4 мг/л).

Река Чагра

Река Чагра является левобережным притоком водохранилища, протяженностью 251 км. Прилегающая местность – открытая, волнистая равнина. Долина пойменная. Слои открытые, сложены супесчаными грунтами. Русло прямолинейное, заражающее водной растительностью. Мониторинг за уровнем загрязнения воды реки проводится в створе "1 км выше н.п. Новотулка".

По комплексным оценкам качество воды реки не изменилось и вода характеризовалась как "грязная" 4 А класса.

К характерным загрязняющим веществам относились сульфаты, трудноокисляемые
органические вещества, фосфаты, соединения магния, меди, цинка и марганца. Повторяемость случаев превышения 1 ПДК составляла 50-100%. Как и в прошлом году, соединения марганца являлись критическим показателем загрязненности воды.

Уровень загрязнения воды соединениями марганца снизился с 17 до 13 ПДК, максимальная концентрация в феврале достигала уровня высокого загрязнения - 46 ПДК (един случай). Повторяемость случаев превышения 10 ПДК соединениями марганца составляла 33%; 30 ПДК - 17%.

Сохранилась на уровне прошлого года загрязненность воды реки соединениями магния (1 ПДК), соединениями меди и трудноокисляемыми органическими веществами (2 ПДК), максимальные концентрации составляли 2; 3 и 3 ПДК соответственно.

С 2 до 3 ПДК выросла среднегодовая концентрация сульфатов, наибольшее значение было равно 7 ПДК.

Среднегодовое содержание взвешенных веществ было равно 7 мг/л (в 2014г. - 8 мг/л), максимальная концентрация составляла 11 мг/л (в 2014г. - 13 мг/л).

Минимальное содержание растворенного кислорода составляло 7,7 мг/л (в 2014г. – 3,3 мг/л).

В течение года на территории Самарской области специалистами ФГБУ «Приволжское УГМС» проводились дополнительные исследования загрязнения поверхностных вод.

Было обследовано 6 водных объектов в четырех районах губернии. В поверхностных водах водоемов определялось содержание 19 загрязняющих веществ и показателей. Результаты наблюдений показали следующее.

В м.р. Волжский проведено обследование поверхностных вод р.Самара, озера Безымянное и Саратовского водохранилища.

В воде р.Самара
- в районе н.п.Шмидта обнаружено повышенное содержание легкоокисляемых органических веществ (по БПК₅ - 1,3 ПДК);
- в черте г.о.Самара зафиксировано повышенное содержание сульфатов (2,2 ПДК), железа общего (3,0 ПДК), легкоокисляемых органических веществ (по БПК₅ - 1,2 ПДК).

В поверхностных водах Саратовского водохранилища
- напротив н.п.Гранный не соответствует нормативам качества содержание азота нитритного (1,1-2,3 ПДК);
- в районе впадения р.Сухая Самара выявлены превышения ПДК по трудноокисляемым органическим веществам (по ХПК) (1,2- 2,2 ПДК), азоту нитритному (1,3-2,0 ПДК), соединениям меди (2,9-3,1 ПДК) и цинка (2,3 ПДК), нефтепродуктам (1,2 ПДК);
- в черте г.о.Самара наблюдалось превышение установленных норм трудноокисляемыми органическими веществами (1,8-2,8 ПДК), соединениями меди (1,3-5,1 ПДК) и цинка (1,4 ПДК), нитритами (2,2-2,4 ПДК), азотом аммонийным (1,2 ПДК), легкоокисляемыми органическими веществами (по БПК₅ – 1,2 ПДК).

В поверхностных водах озера Безымянное обнаружено повышенное содержание меди (2,2 ПДК). В м.р. Похвистневский выполнен обследование поверхностных вод р.Большой Кинель обнаружено превышение нормы сульфатами (3,3 ПДК) и трудноокисляемыми органическими веществами (1,6 ПДК).

В м.р. Кинельский проведен обследование поверхностных вод р.Самара
- в черте н.п.Спирidonовка вода реки не соответствуют нормативам качества по железу общему (1,7-2 ПДК) и сульфатам (2 ПДК);
- в районе н.п.Домашка зарегистрировано превышение содержания сульфатов (1,8-4,1 ПДК), азота нитритного (1,4 ПДК), легкоокисляемых органических веществ (по БПК₅ - 1,5 ПДК), соединений меди (1,5 ПДК), соединений цинка (1,2-2,6 ПДК), железа общего (1,7-2,9 ПДК).
В м.р. Сергиевский в поверхностных водах р.Сургут в районе н.п. Серноводск обнаружено повышенное содержание сульфатов (3,9 ПДК).

2.2.1.4. Содержание нефтепродуктов и хлорорганических пестицидов в донных отложениях водных объектов

В системе мониторинга поверхностных вод суши в ограниченном числе пунктов проводятся наблюдения за загрязненностью донных отложений нефтепродуктами и пестицидами. Донные отложения представляют собой информативный объект наблюдений, состояние которого также определяет уровень загрязненности водных объектов, в том числе нефтепродуктами, хлорорганическими пестицидами (ХОП).

Несмотря на очевидную опасность нефтяного загрязнения донных отложений, их ПДК в водных объектах не установлены. Поэтому обычно степень загрязненности донных отложений нефтепродуктов определяют по превышению концентраций относительно «фона» или «условного фона», в качестве которого используются донные отложения, отобранные в исследуемом водном объекте выше возможных источников загрязнения. «Фон», обусловленный наличием нефтепродуктов естественного происхождения, составляет для большинства водных объектов 0,01-0,30 мг/г.

Одновременно существует классификация донных отложений по степени их нефтяного загрязнения в мг/г сухого остатка:
- чистые <0,10;
- слабо загрязненные 0,10-0,20;
- средне загрязненные 0,20-0,60;
- грязные 0,60-1,00;
- очень грязные >1,00.

Содержание нефтепродуктов в донных отложениях водных объектов Самарской области в отчетном году находилось в интервале от 0,01 до 0,461 мг/кг. Степень загрязненности донных отложений обследованных водных объектов, как и в предыдущие годы, различна: от "чистых" до "средне загрязненных". К "чистым" относятся донные отложения рр.Чагра, Чапаевка и Большой Кинель. "Слабо загрязненными" характеризовались донные отложения рр.Сургут, Безенчук, Сок (1 км выше впадения р.Сургут) а также участок Куялышевского водохранилища в районе г.о.Тольятти. К "средне загрязнённым" относились донные отложения р.Сок (7,5 км ниже н.п.Сергиевск) и участки Саратовского водохранилища в черте г.о.Самара и Сызрань.

Анализ состояния загрязненности донных отложений ХОП водотоков за 2015 год показал, что ДДТ зафиксировано в пределах 0,0-0,949 мг/кг, ДДЭ – 0,001-0,295 мг/кг; тритрана – 0,0-0,078 мг/кг; альфа-ГХЦГ – 0,0-0,137 мг/кг; бета+гамма-ГХЦГ – 0,0-0,105 мг/кг.

2.2.1.5. Гидробиологическое состояние водных объектов

Регулярные гидробиологические наблюдения за состоянием загрязнения поверхностных вод проводятся ФГБУ «Приволжское УГМС» на территории области с 1975 года. Гидробиологический мониторинг проводится по четырем показателям: фитопланктон (водоросли, обитающие в толще воды), зоопланктон (беспозвоночные животные водной толщи), перифитон (зоо- и фитообрастатели подводных предметов), зообентос (беспозвоночные животные, обитающие на дне).

В 2015 году гидробиологические наблюдения проводились на Куялышевском (н.п.Климовка, г.о.Тольятти) и Саратовском (г.о.Тольятти, Самара, Сызрань устье реки
Чапаевка) водохранилищах, а также 9 реках (Большой Кинель, Кондурча, Кривуша, Падовка, Самара, Сок, Съезжая, Чагра, Чапаевка).

2.2.1.5.1. Критерии оценки водоёмов по гидробиологическим показателям

В пробах, отобранных по сезонам, для каждой станции определяется видовой состав, численность, биомасса, выделяются виды-индикаторы той или иной зоны загрязнения органическим веществом, вычисляется индекс сапробности и по совокупности данных дается оценка качества вод в классах.

Сапробность водоёма – характеристика степени загрязненности водоёма органическими веществами. Сапробность водоёма устанавливается по видовому составу обитающих в нем организмов-сапробионтов. В зависимости от степени загрязнения различают водоёмы:

- олигосапробные
- β-мезосапробные
- α-мезосапробные
- полисапробные
- грязные.

Критериями оценки качества поверхностных вод по гидробиологическим показателям являются классы чистоты вод, представленные в классификаторе, предложенным в «РД 52.24.309-2011. Руководящий документ. Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши».

Таблица 2.2.1.5.1.1

Классификация качества вод суши по гидробиологическим показателям

<table>
<thead>
<tr>
<th>Класс качества воды</th>
<th>Степень загрязненности воды</th>
<th>Гидробиологические показатели</th>
<th>Фитопланктон, zooplankton, periphyton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Зообентос</td>
<td>Биотический индекс по Вудивиссу, баллы</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Отношение численности олигохет к общей численности бентосных организмов в пробе, %</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>условно чистая</td>
<td>До 30</td>
<td>7-10</td>
</tr>
<tr>
<td>II</td>
<td>слабо загрязненная</td>
<td>31-50</td>
<td>5-6</td>
</tr>
<tr>
<td>III</td>
<td>загрязненная</td>
<td>51-70</td>
<td>3-4</td>
</tr>
<tr>
<td>IV</td>
<td>грязная</td>
<td>71-90</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>экстремально грязная</td>
<td>91 – 100 или макробентос отсутствует</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Примечание: Допустимо также оценивать класс вод как промежуточный между вторым и третьим (II-III), третьим и четвертым (III-IV), четвертым и пятым (IV-V) классам.

Стрелки, поставленные между классами, указывают на преобладающие оценки качества вод по отдельным сообществам гидробионтов (фитопланктона, periphytona, zooplanktona) в толще воды либо на преобладание признаков того или иного класса внутри сообщества (бентоса) в придонном слое.
Индекс сапробности — численное выражение способности сообщества гидробионтов выдерживать определённый уровень органического загрязнения.

2.2.1.5.2. Гидробиологический мониторинг водохранилищ

Куйбышевское водохранилище. Качество воды Приплотинного плеса Куйбышевского водохранилища в районе г.о.Тольятти, расположенного на территории Самарской области, контролировалось зимой, весной, летом и осенью.

По данным фитопланктона, как и в 2014 году, качество вод оценивалось в среднем II—III классом на двух станциях: в 0,5 км ниже выпуска сточных вод ООО «АВК» и в 1,3 км выше плотины ГЭС у левого берега. На двух других станциях уровень загрязнения соответствовал II классу. Средняя оценка уровня загрязнения в районе города по данным фитопланктона соответствовала II—III классу при варьировании индекса сапробности от 1,87 до 2,32 (II—III классу — в 2014 году). Качество вод по индексу сапробности по сравнению с оценками в 2014 году практически не изменилось.

По данным перифитона качество воды в районе водозабора оценивалось во все сезоны II классом (значения индекса сапробности варьировали от 1,88 до 2,14). В районе выпуска ООО «АВК» качество воды в целом не изменилось по сравнению с данным прошлого года и оценивалось II классом (значения индекса сапробности – 1,77-2,09). На двух других станциях, расположенных на одном створе, качество воды в целом улучшилось по сравнению с данными 2014 года и оценивалось II классом на левобережной станции в 1,3 км выше плотины ГЭС (значения индекса сапробности – 1,99-2,18), а на правобережной II—III классом (значения индекса сапробности – 1,98-2,28). Таким образом, в 2015 году в районе г.о.Тольятти в целом качество воды оценивалось II классом, тогда как в 2014 году - II—III классом.

По данным зоопланктона за весь период наблюдения в 2015 г. на створах г.о.Тольятти количество видов колебалось от 7 до 27 видов, в 2014 г. изменялось от 5 до 26 видов. Численность зоопланктона в 2015 г. варьировала от минимальной величины для всего водохранилища (0,26 тыс.экз./м³) до максимальной для всей акватории (391,6 тыс.экз./м³); в 2014 г. она изменялась от 0,5 до 271,6 тыс.экз./м³. Общая оценка качества воды на створах г.о.Тольятти в 2015 г. оценена II классом с индексами от 1,5 до 2,36; в 2014 г. качество воды так же оценено II классом, индексы сапробности составляли 1,45 – 1,91.

В среднем по всем показателям качество толще воды в районе г.о.Тольятти оценивалось II—III классом (Таблица 2.2.1.5.2.1.).

Таблица 2.2.1.5.2.1.

<table>
<thead>
<tr>
<th>Годы</th>
<th>Водозабор г.о.Тольятти, левый берег</th>
<th>Ниже выпуска сточных вод ООО "АВК", левый берег</th>
<th>1,5 км выше плотины ГЭС, левый берег</th>
<th>1,5 км выше плотины ГЭС, правый берег</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Толща воды</td>
<td>Дно</td>
<td>Толща воды</td>
<td>Дно</td>
</tr>
<tr>
<td>2014</td>
<td>II</td>
<td>II—II</td>
<td>II</td>
<td>II—III</td>
</tr>
<tr>
<td>2015</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II—III</td>
</tr>
</tbody>
</table>

По данным зообентоса средняя оценка уровня загрязнения придонного слоя воды в районе г.о.Тольятти соответствовала II классу, в 2014 году — II—III классу.

По совокупности всех показателей качество вод в районе г.о.Тольятти в...

Саратовское водохранилище. Гидробиологический мониторинг проводился на водохранилище по сезонам в районе г.о.Тольятти, Самара, Сызрань и ниже устья р.Чапаевка.

Г.о. Тольятти. Как и в 2014 году, по данным фитопланктона в среднем уровень загрязнения воды в районе г.о.Тольятти соответствовал II-III классу (индексы сапробности 2,1-2,53).

По данным перифиита в указанном районе качество воды оценивалось II←III классом (значения индекса сапробности варьировали от 1,89 до 2,42), тогда как в 2014 году - II классом.

По данным зоопланктона за период наблюдения на створах г.о.Тольятти количество видов в 2015г. колебалось от 6 до 19, в 2014г. – от 8 до 21. Численность зоопланктона варьировала от 0,5 до 72,9 тыс.экз./м³, в 2014г. она изменялась от 0,7 до 28,3 тыс.экз./м³. Качество воды в районе обследования оценено II классом, индексы сапробности колебались от 1,54 до 2,2. В 2014г. качество воды соответствовало II классу, индексы сапробности варьировали от 1,47 до 1,94.

По данным зообентоса общая оценка качества воды придонного слоя соответствовала II←III классу, в 2014г. - II-III классу.

По совокупности всех показателей качество вод в районе г.о.Тольятти в отчетный период оценивалось: в толще воды – II←III классом (II←III классом – в 2014г.), в придонном слое – II классом (II←III классом в 2014г.).

Г.о.Самара. По данным фитопланктона уровень загрязнения воды в районе г.Самара на фоновой станции соответствовал II-III классу весной и II классу в другие сезоны. В 1 км ниже ГОС на русловой станции качество воды ухудшилось весной до уровня II-III класса, у левого берега – весной – до II-III класса, осенью - до III класса. В среднем и на фоновой станции, и на створе, расположенном ниже города, качество воды оценивалось II←III классом, как и в 2014 году.

По данным перифиита на станции выше города качество воды оценивалось II классом. На станциях ниже сброса сточных вод городских очистных сооружений уровень загрязнения воды в целом оценивался II классом. Колебания индекса сапробности – от 1,94 до 2,22. Такие же оценки были и в 2014 году.

По данным зоопланктона за период наблюдения на створах г.о.Самара количество видов колебалось от 5 до 16 видов, в 2014 году оно изменялось от 5 до 25 видов. Численность зоопланктона варьировала от 0,25 до 28,2 тыс.экз./м³, в 2014г. она изменялась от 0,3 до 31,6 тыс.экз./м³. Качество воды оценено II классом, индексы сапробности колебались от 1,55 до 2,0. Качество воды в 2014г. также соответствовало II классу, индексы сапробности изменялись от 1,48 до 2,0.

По данным зообентоса средние оценки качества воды придонного слоя по створам в 2015г. в среднем соответствовали: выше города – II классу, ниже города - II←III классу; в 2014г.: выше города - II←III классу, ниже города - II→III классу.

По совокупности всех показателей качество вод в районе г.о.Самара в отчетный период оценивалось:
- выше города – в толще воды - II←III классом (II←III классом – в 2014г.), в придонном слое II классом (II-III классом в 2014г.);
- ниже города – в придонном слое II классом (II-III классом – в 2014г.), в придонном слое – II←III классом (II←III классом – в 2014г.).

Устье р.Чапаевка. По данным фитопланктона качество вод этого района в среднем оценивалось II-III классом (индекс сапробности 2,03-2,55). В 2014 году во все сезоны качество вод по значениям индекса сапробности (2,0-2,15) соответствовало II классу.
По данным перифитона качество воды оценивалось И классом, значения индексов сапробности изменялись по сезонам от 2,00 до 2,16, как и в 2014 г. - И класс; 2,05-2,2.

По данным зоопланктона за период наблюдения в устье р. Чапаевка количество видов колебалось от 8 до 18 видов, в 2014 г. оно изменялось от 9 до 19 видов. Численность зоопланктона колебалась от 0,2 до 41,2 тыс. экз./м³; в 2014 г. - от 1,2 до 14,3 тыс. экз./м³. Качество воды в 2015 г. так же, как и в 2014 г., соответствовало И классу с индексами сапробности от 1,6 до 2,15; в 2014 г. индексы сапробности колебались от 1,58 до 2,26.

По данным зообентоса средняя оценка качества воды в придонном слое соответствовала И–III классу, в 2014 г. качество воды оценили III классом.

По совокупности всех показателей качество вод в районе устья р. Чапаевка в отчетный период оценивалось:
- в толще воды II–III классом (II класс – в 2014 г.), в придонном слое II–III классом (III класс – в 2014 г.).

Г.о. Сызрань. По данным фитопланктона в среднем за год качество вод соответствовало И–III классу на фоновой станции, II–III классу на створе, расположенном ниже города при варьировании индекса сапробности от 1,83 до 2,47. В 2014 году качество вод в этом районе оценивалось II классом и на фоновой станции, и на контрольных станциях (индексы сапробности 1,84–2,19).

По данным перифитона качество воды на фоновой станции в целом за период наблюдения оценивалось II–III классом (индексы сапробности 2,06–2,27), в 2014 году на данной станции качество воды оценивалось II классом. Ниже города уровень загрязнения соответствовал II классу и на правобережной станции, и на руселовой. Колебания индекса сапробности – от 2,03 до 2,24. Такие же оценки качества вод на данном створе были и в 2014 году.

По данным зоопланктона за период наблюдения в районе г.о. Сызрань количество видов изменялось от 5 до 17, в 2014 г. количество видов колебалось от 4 до 16 видов. Численность зоопланктона варьировала от 0,2 до 60,4 тыс. экз./м³; в 2014 г. количество организмов менялась от 0,17 до 80,2 тыс. экз./м³. Качество воды в 2015 г. соответствовало II классу, с индексами сапробности 1,4 – 2,01; в 2014 г. сапробность составляла 1,49 – 2,13, качество воды оценено также II классом.

По данным зообентоса оценки уровня загрязнения придонного слоя воды соответствовали в среднем II классу, в 2014 г.: II–III классу на фоновой станции, III классу на створе, расположенном ниже города.

По совокупности всех показателей качество вод в районе г.о. Сызрань в отчетный период оценивалось:
- выше города – в толще воды - II–III классом (II класс – в 2014 г.), в придонном слое II классом (II–III класс – в 2014 г.);

Среднегодовые оценки качества вод обследованного участка Саратовского водохранилища в 2015 году по большинству гидробиологических показателей свидетельствовали об ухудшении качества толщи воды и некотором улучшении качества придонного слоя воды.

По данным фитопланктона средние оценки качества вод составляли: II класса – отсутствовали (в 2014 г. – 60%), II–III класса – 60% (в 2014 г. - 30%), II–III класса – 40% (в 2014 г. - 10%).

По данным перифитона средние оценки II класса составляли 86%, тогда как в 2014 году – 100%, II–III класса – 14% (в 2014 г. - 0%).

По данным зоопланктона в 2015 г. оценки качества вод II класса составляли 100% всех оценок, как и в 2014 году.

По данным зообентоса оценки качества придонного слоя воды II класса составляли 50% (в 2014 г. - отсутствовали), II–III класса составляли 50% (в 2014 г. - 20%); II–III класса
- 30% (в 2014г. - 40%); II→III класса – отсутствовали (в 2014г. - 30%); III←IV класса - отсутствовали (в 2014г. – 10%).

Усредненные общие оценки уровня загрязнения обследованного участка Саратовского водохранилища, расположенного на территории Самарской области, представлены в таблице 2.2.1.5.2.2.

Таблица 2.2.1.5.2.2

Оценка уровня загрязнения вод Куйбышевского и Саратовского водохранилищ в классах по вертикалям

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Пункт наблюдений</th>
<th>Местоположение створа (вертикали)</th>
<th>2015 год</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ФП</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ПФ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ЗП</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ЗБ (дно)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Общая оценка (толща воды)</td>
</tr>
<tr>
<td>1</td>
<td>г.о.Тольятти</td>
<td>0,5 км ниже сброса сточных вод ГОС, середина</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>2</td>
<td>г.о.Тольятти</td>
<td>0,5 км ниже сброса сточных вод ГОС, 0,27 км от левого берега</td>
<td>II-III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>3</td>
<td>г.о.Тольятти</td>
<td>Против н.п. Зольное, середина</td>
<td>II-III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>4</td>
<td>г.о.Самара</td>
<td>0,5 км выше города, 0,2 км от левого берега</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>5</td>
<td>г.о.Самара</td>
<td>1,0 км ниже выпуска ГОС, 0,2 км от левого берега</td>
<td>II-III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>6</td>
<td>г.о.Самара</td>
<td>1,0 км ниже выпуска ГОС, середина</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>7</td>
<td>Устье р.Чапаевка</td>
<td>1,0 км ниже устья, 0,2 км от левого берега</td>
<td>II-III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>8</td>
<td>г.о.Сызрань</td>
<td>Против г.о. Октябрьска, 0,15 км от правого берега</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>9</td>
<td>г.о.Сызрань</td>
<td>Против ст.Кашпир, середина</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
<tr>
<td>10</td>
<td>г.о.Сызрань</td>
<td>Против ст.Кашпир, 0,2 км от правого берега</td>
<td>II←III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II←III</td>
</tr>
</tbody>
</table>

2.2.1.5.3. Гидробиологический мониторинг рек

Гидробиологический мониторинг проводился на 15 створах 9 рек на территории Самарской области. Количественные и качественные показатели состояния биоценозов на разных реках и створах значительно различались.

Ниже рассмотрены итоги мониторинга по отдельным показателям на разных реках.

Число зарегистрированных таксонов в составе перифитона (43) уменьшилось по сравнению с данными предыдущего года (61). Качество воды оценивалось II←III классом
со средним индексом сапробности 2,25 (как и в 2014 году: II–III; 2,28).

За период наблюдения по данным зоопланктонов число видов уменьшилось до 11 видов против 31 в 2014 г. Среднегодовые показатели численности составляли 14,59 тыс.экз./м³, в 2014 г. – 9,4 тыс.экз./м³. В целом в 2015 г., как и в 2014 г., качество воды в р. Сок соответствовало II классу. Индексы сапробности изменялись в 2015 г. от 1,31 до 1,62, в 2014 г. - от 1,5 до 1,85.

В целом по данным зоопланктонов число видов увеличилось до 29 против 23 видов в 2014 г. Среднегодовые показатели численности увеличились до 19,9 тыс.экз./м³ против 6,2 тыс.экз./м³ в 2014 г. Качество воды в 2015 г., как и в 2014 г., соответствовало II классу. Индексы сапробности составляли: в 2015 г. - 1,57-1,85; в 2014 г. - 1,46-1,61.

В отчетный период в сообществе зообентоса наблюдалось снижение численности и биомассы от максимума в мае (1060 экз./м³ и 0,9 г/м²) до минимума в октябре (280 экз./м³ и 0,38 г/м²). Качество придонного слоя воды в 2015 г. оценивалось II–III классом, в 2014 г. - III классом.

По совокупности всех показателей качество толщи воды р. Сок в районе устья в отчетный период оценивалось II–III классом (II–III классом – в 2014 г.), в придонном слое - II классом (III классом – в 2014 г.).

По данным перифитона общее количество зарегистрированных таксонов (76) уменьшилось по сравнению с данными предыдущего года (105). На станции выше пгт. Алексеевка уровень загрязнения оценивался II–III классом со средним индексом сапробности 2,27. В 2014 году на данной станции уровень загрязнения оценивался II–III классом со средним индексом сапробности 2,37. В районе г.о. Самара качество вод в среднем оценивалось II–III классом, как и в 2014 году (значения индексов сапробности варьировали от 2,15 до 2,3).

В целом за период исследования в 2015 г. по данным зоопланктонов в р. Самара обнаружено 59 видов, в 2014 г. – 42 вида. Среднегодовая численность зоопланктонов составляла 21,03 тыс.экз./м³, в 2014 г. – 10,9 тыс.экз./м³. Качество воды в р. Самара в 2015 г. соответствовало II классу, индексы сапробности колебались от 1,41 до 1,94, в 2014 г. также II класс, индексы – 1,44-1,97.

На створе выше н.п. Алексеевка число видовых групп зообентоса составляло от 4 в августе до 8 в октябре. Уровень загрязнения оценивался в среднем II–III классом, в

По совокупности всех показателей качество вод обследованного участка р.Самара в отчетный период оценивалось:

Река Падовка (г.о.Самара). По сравнению со значением 2014 года несколько увеличилось число таксонов водорослей **фитопланктон** от 76 до 86. В среднем уровень загрязнения воды соответствовал II—III классу (индексы сапробности 1,99-2,33), в 2014 году II—III классу (2,07-2,95).

В составе **перицитона** насчитывалось несколько меньше таксонов (48 таксонов), чем в 2014 году (57 таксонов). Уровень загрязнения за весь период наблюдался в целом оценивался II-III классом (индексы сапробности 2,21-2,38), как в 2014 году.

В целом за период исследования по данным **зоопланктон** в р.Падовка число видов увеличилось в 2015 году до 35 против 33 видов в 2014г. Среднегодовые показатели численности уменьшились до 14,5 тыс.экз./м³ против 28,5 тыс.экз./м³ в 2014г. Качество воды в 2015г. оценено, как и в 2014г., II классом.

В сообществе **зообентоса** ведущими организмами в мае являлись нематоды, в августе - хирономиды, в октябре - олигохеты. Средняя оценка качества воды придонного слоя соответствовала II—III классу, в 2014г. - IV классу.

По совокупности всех показателей качество толщи воды р.Падовка в районе г.о.Самара в отчетный период оценивалось II—III классом (II-III классом – в 2014г.), в придонном слое – II—III классом (III классом – в 2014г.).

Река Большой Кинель (г.о.Отрадный, н.п.Тимашево). В целом в сообществе **фитопланктон** обследованного участка число таксонов водорослей по сравнению со значением в 2014 году не изменилось (129). В районе г.о.Отрадный качество вод в среднем оценивалось II—III классом на обеих станциях (2,21-2,34), в 2014 году: выше города - II—III классом, ниже города II-III классом. В среднем качество вод в районе г.о.Самара в отчетный период оценивалось: выше н.п.Алексеевка, ниже города от 1,35 до 2,04 в 2015г, как и в 2014г. на обеих станциях в районе г.о.Самара качество воды (индексы 2,33), в 2014 году: выше н.п.Алексеевка, ниже города от 76 до 86. В среднем уровень загрязнения воды соответствовал II—III классу (индексы 2,29), как и в 2014 году.

По данным **перицитона** число видов **зоопланктон** в р.Большой Кинель в 2015г. увеличилось до 69 против 66 видов в 2014г. Среднегодовая численность планктонта возросла до 41,05 тыс.экз./м³ против 24,5 тыс.экз./м³ в 2014г. Общая оценка качества воды в р.Большой Кинель в 2015г., как и в 2014г., соответствовала II классу. Индексы сапробности колебались от 1,52 до 2,04 в 2015г., в 2014г. - от 1,52 до 1,76.

По совокупности всех показателей качество вод р.Большой Кинель в районе г.о.Отрадный соответствовало II—III классам (индекс 2,29), как и в 2014 году.
По совокупности всех показателей качество воды р. Большой Кинель в районе г.о. Отрадный в отчетный период оценивалось:
- выше н. п. Тимашево — в толще воды — II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.);
- ниже н. п. Тимашево — в толще воды — II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.).

П р и м е ч а н и е:
- выше н. п. Тимашево — в толще воды — II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.).

По совокупности всех показателей качество воды р. Большой Кинель в районе: г.о. Отрадный в отчетный период оценивалось:
- выше н. п. Тимашево — в толще воды — II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.).
- ниже н. п. Тимашево — в толще воды — II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.).

Р е к а С ъ е з ж а я. Общее число таксонов водорослей в сообществе фитопланктона почти не изменилось (86 — в 2014 г., 85 — в 2015 г.). В целом качество воды соответствовало II классу при вариациях индекса сапробности от 2,1 до 2,23, в 2014 году — II—III классу (1,88 - 2,51).

В целом за период наблюдения зарегистрировано 51 таксон водорослей. Этот показатель меньше, чем в 2014 году, когда в составе перифитона было зафиксировано 66 таксонов. В целом уровень загрязнения на данном участке не изменился по сравнению с данными прошлого года и соответствовал II—III классу.

За период наблюдения по данным зоопланктона число видов увеличилось до 33 против 23 в 2014 г. Среднегодовые показатели численности увеличились до 12,8 тыс. экз./м³ против 6,6 тыс. экз./м³ в 2014 г. Качество воды в 2015 г. соответствовало II классу, индексы сапробности колебались от 1,39 до 1,71; в 2014 г. качество воды оценено I-II классом с индексами сапробности от 1,21 до 1,5.

Средняя численность зообентоса составляла 4553 экз./м²; биомassa — 5,96 г/м². Максимум этих показателей отмечался в августе, а минимум в мае. В целом уровень загрязнения придонного слоя воды в районе устья р. Съезжая соответствовал II—III классу, в 2014 г. - III классу.

По совокупности всех показателей качество толщи воды р. Съезжая в районе устья в отчетный период оценивалось II—III классом (II—III классом — в 2014 г.), в придонном слое — II—III классом (III—IV классом — в 2014 г.).

Р е к а Ч а п а е в к а г.о. Ч а п а е в с к и й. Общее число таксонов фитопланктона увеличивалось от 86 (2014 г.) до 115 (2015 г.). В целом качество воды в этом районе соответствовало II—III классу и на фоновой станции при значениях индекса 2,05 — 2,25 (II—III классу - 2,0-2,43 — в 2014 году), и на контрольной при значениях индекса 2,06-2,26 (II—III классу - 2,09-2,51 — в 2014 году).

За весь период наблюдения по данным зоопланктона число видов увеличилось до 61 вида против 45 в 2014 г. Среднегодовые показатели численности зоопланктона в р. Чапаевка увеличились до 57,1 тыс. экз./м³ против 13,8 тыс. экз./м³ в 2014 г. Качество воды в 2015 г. оценено II классом, индексы сапробности колебались от 1,59 до 1,71; в 2014 г. - II класс, индексы изменялись от 1,65 до 2,28.

По совокупности всех показателей качество воды р. Чапаевка в районе г.о. Чапаевск в отчетный период оценивалось:
- выше города — в толще воды — II—III классом (II—III классом — в 2014 г.), в
придонном слое – II→III классом (III→IV классом – в 2014г.);

Река Кривуша (г.о.Новокуйбышевск). В сообществе фитопланктона общее число таксонов увеличилось от 58 в 2014г. до 79 в 2015г. В среднем уровень загрязнения соответствовал II→III классу (индексы сапробности 1,93-2,67), как и в 2014 году (индексы 2,2-2,25).
За весь период наблюдения по данным зоопланктона число видов увеличилось до 44 против 31 вида в 2014г. Среднегодовые показатели численности зоопланктона в 2015 г. уменьшились до 11,6 тыс.экз./м³ против 62,0 тыс.экз./м³ в 2014г. Качество воды в 2015 г. соответствовало II классу, индексы сапробности колебались от 1,33 до 1,83; а в 2014 г. качество воды оценивалось II-III классом с индексами сапробности от 1,55 до 2,35.
В 2015 году отмечено снижение средней численности зообентоса от 1826 экз./м² и 2,16 г/м² в 2014г. до 1080 экз./м² и 1,14 г/м² в 2015г. В целом средняя оценка качества придонного слоя воды соответствовала II→III классу, в 2014г. - III классу.
По совокупности всех показателей качество воды в районе г.о.Новокуйбышевск в отчетный период оценивалось II→III классом (II→III класс – в 2014г.), в придонном слое – II→III классом (III классом – в 2014г.).

Река Чагра (н.п.Новотулка). По сравнению с данными 2014 года общее число таксонов водорослей фитопланктона уменьшилось от 89 до 70. В среднем уровень загрязнения соответствовал II-III классу (индексы сапробности 2,24-2,65), в 2014 году – II→III классом (1,82-2,34).
Всего за период наблюдения в составе перифитона в 2015 году насчитывалось 51 таксон обитателей обрастаний (в 2014г. – 79 таксонов). В целом качество воды на данном участке по сравнению с прошлым годом, когда уровень загрязнения соответствовал II→III классу, улучшилось и оценивалось II классом (значения индекса сапробности варьировали от 2,11 до 2,18).
За период наблюдения в 2015г. по данным зоопланктона число видов увеличилось до 33 против 29 видов в 2014г. Общая численность зоопланктона в 2015г. составляла 15,4 тыс.экз./м³, в 2014г. она была меньше – 8,3 тыс.экз./м³. Качество воды в 2015г. такое же, как и в 2014г., оценено II классом, индексы сапробности колебались от 1,55 до 1,73; в 2014 г. - от 1,67 до 1,94.
Количественные показатели развития зообентоса составляли: средняя общая численность – 1053 экз./м²; общая биомасса – 0,59 г/м². Качество придонного слоя воды в среднем оценивалось II→III классом, в 2014г. III→IV классом.
По совокупности всех показателей качество воды река Чагра в районе н.п.Новотулка в отчетный период оценивалось II→III классом (II→III класс – в 2014г.), в придонном слое - II→III классом (III→IV классом – в 2014г.).
Оценки качества вод на реках различались по данным развития разных сообществ гидробионтов ввиду их различной реакции на воздействие загрязняющих веществ.
По данным фитопланктона наиболее загрязненными участками были участки на реках Чагра (II-III класс) и Кондурча (II→III). Самый низкий уровень загрязнения отмечался на р.Съезжая (II класс). На остальных реках средний уровень загрязнения соответствовал II→III классу.
Наиболее загрязненными участками по данным перифитона являлись участки рек Падовка (1 км выше устья), Большой Кинель, Кривуша, Чапаевка и Сок (II-III класс). Наиболее чистой являлась вода реки Чагра, в которой уровень загрязнения соответствовал II классу.
В целом в 2015г. в реках Самарской области количество видов зоопланктона изменилось от 21 в р.Сок до 69 видов в р.Большой Кинель. Среднегодовые максимальные показатели планктона отмечались в р.Чапаевка: численность - 57,1 тыс.экз./м³; биомасса - 346,6 мг/м³. В целом за весь период наблюдения в 2015г. по данным зоопланктона на всех
обследованных реках Самарской области качество воды оценино II классом, средние индексы сапробности колебались от 1,5 до 1,79; такое же качество воды было и в 2014 г., индексы изменились от 1,37 до 1,9.

По данным зообентоса на реках Самарской области наблюдалось снижение уровня загрязнения придонного слоя воды. Наиболее загрязненными являлись рр.Самара (9,0 км выше Южного, а.д. моста), Падовка, Большой Кинель (г.о.Отрадный и выше н.п.Тимашево), Чапаевка (выше г.о.) – от II→III до III класса.

По совокупности всех показателей уровень загрязнения толщи воды в отчетный период в среднем соответствовал II→III классу на всех обследованных участках рек. Наиболее высокий уровень загрязнения придонного слоя воды (от II→III до III класса) отмечался на участках рек Самара, Падовка, Большой Кинель, Чапаевка.

Озеро Большое Стрельнинское (территория НПП "Самарская Лука"). Гидробиологический мониторинг проводился на центральном участке озера весной, летом и осенью по четырем гидробиологическим показателям (фитопланктон, перифитон, зоопланктон, зообентос). Количественные и качественные показатели состояния биоценозов несколько различались.

Всего за период исследования в озере обнаружено 44 вида и разновидности водорослей фитопланктита. В целом качество вод соответственно II→III классу при варьировании индекса сапробности от 2,11 до 2,26.

Всего за период наблюдения в составе перифитона насчитывалось 46 таксонов обитателей обрастаний. В целом качество воды на данном водном объекте оценивалось II классом (значения индекса сапробности варьировали от 1,98 до 2,01).

По данным зоопланктона за период наблюдения в озере Стрельнинское число видов изменялось от 19 до 31 вида. Общее количество видов — 40. Среднегодовая численность 117,78 тыс.экз./м³, а биомасса 751,98 мг/м³. Качество воды в 2015 г. оценено II классом, индексы сапробности колебались от 1,48 до 1,6.

В сообществе зообентоса за период наблюдения максимум значений численности и биомассы (1120 экз./м² и 2,52 г/м²) отмечался в октябре, минимум этих значений (100 экз./м² и 0,24 г/м²) - в мае. Доминировали во все сезоны хирономиды. Число видовых групп в 2015г. - 2. Общая оценка качества придонного слоя воды - II→III класс.

По совокупности всех показателей качество толщи воды озера Большее Стрельнинское в отчетный период оценивалось II→III классом, в придонном слое - II→III классом.

Усредненные общие оценки уровня загрязнения обследованных участков рек Самарской области по створам представлены в таблице 2.2.1.5.3.1.

Таблица 2.2.1.5.3.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Водоток, пункт наблюдений</th>
<th>Местоположение створа (вертикали)</th>
<th>ФП</th>
<th>ПФ</th>
<th>ЗП</th>
<th>ЗБ (дно)</th>
<th>Общая оценка (толща воды)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>р.Сокг.Сергиевск</td>
<td>1,0 км ниже города, левый берег</td>
<td>II→III</td>
<td>II→III</td>
<td>II</td>
<td>II→III</td>
<td>II→III</td>
</tr>
<tr>
<td>2</td>
<td>р.Кондурча Устье</td>
<td>0,5 км выше устья, правый берег</td>
<td>II→III</td>
<td>II→III</td>
<td>II</td>
<td>II</td>
<td>II→III</td>
</tr>
<tr>
<td>3</td>
<td>р.Самара г.о.Алексеевка</td>
<td>1,0 км выше пгт, правый берег</td>
<td>II→III</td>
<td>II→III</td>
<td>II</td>
<td>II</td>
<td>II→III</td>
</tr>
<tr>
<td>4</td>
<td>р.Самара г.о.Самара</td>
<td>9,0 км выше Южного, а.д. моста, правый</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>III</td>
<td>II</td>
</tr>
</tbody>
</table>
2.2.1.5.4. Родники

На территории области выходы на поверхность земли имеют почти все основные горизонты подземных вод. Гидрогеологические условия в регионе весьма разнообразны и частота выходов подземных вод, их дебиты, качество вод значительно разнятся по муниципальным районам в зависимости от степени расчлененности (степени изрезанности земной поверхности овражно-балочной и гидрографической сетью) территории и особенностей залегания водоносных слоев, их водопроводимости. На значительной территории на севере области пермские породы залегают рядом с поверхностью или выходят на неё, в них (особенно для пород татарского яруса) характерна частая смена водосодержащих трещиноватых скальных и водоупорных глинистых пород. На юге водоносные горизонты перекрыты с поверхности слабо проницаемой толщей глин, и подземные воды в верхней части разреза встречаются главным образом в долинах рек, в которые они разгружаются. Расчлененность территории области также в целом уменьшается в направлении север-юг.

Эти факторы предопределяют обилие родников на севере (за исключением слаборасчлененной территории левобережной части м.р. Ставропольский, где расположено только 7 родников) при малом количестве их на юге.

<table>
<thead>
<tr>
<th>№</th>
<th>Обозначение</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>р.Самара г.о.Самара</td>
<td>0,1 км выше Южного, а.-д. моста, правый берег</td>
<td>П→III</td>
<td>П→III</td>
<td>П</td>
<td>П-III</td>
</tr>
<tr>
<td>6</td>
<td>р.Падовка г.о.Самара</td>
<td>1 км выше устья, правый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>7</td>
<td>р.Б.Кинель г.о.Отрадный</td>
<td>1,0 км выше города, правый берег</td>
<td>П→III</td>
<td>П→III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>8</td>
<td>р.Б.Кинель г.о.Отрадный</td>
<td>1,0 км ниже города, правый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>9</td>
<td>р.Б.Кинель н.п.Тимашево</td>
<td>1,0 км выше пт., левый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>10</td>
<td>р.Б.Кинель н.п.Тимашево</td>
<td>1,0 км ниже пт., левый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>11</td>
<td>р.Сызкая Устье</td>
<td>0,5 км выше устья, левый берег</td>
<td>П</td>
<td>П→III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>12</td>
<td>р.Чапаевка г.о.Чапаевск</td>
<td>1,0 км выше города, правый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>13</td>
<td>р.Чапаевка г.о.Чапаевск</td>
<td>1,0 км ниже города, правый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>14</td>
<td>р.Кривуша г.о.Новокуйбышевск</td>
<td>2,0 км ниже города, левый берег</td>
<td>П→III</td>
<td>П-III</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>15</td>
<td>р.Чагра н.п.Новотулка</td>
<td>1,0 км ниже села, правый берег</td>
<td>П-III</td>
<td>П</td>
<td>П</td>
<td>П→III</td>
</tr>
<tr>
<td>16</td>
<td>оз.Большое Стрельнинское</td>
<td>Центр озера</td>
<td>П→III</td>
<td>П</td>
<td>П</td>
<td>П→III</td>
</tr>
</tbody>
</table>
Имеющие наиболее расчлененный рельеф (0,76-0,85 километра на квадратный километр) муниципальные районы северо-востока области – Клявлинский, Камышлинский, Исаклинский, Сергиевский и Похвистневский – характеризуются большим числом (от 98 до 215) родников, среди которых высок удельный вес (от 25 до 40,9 процента, м.р. Похвистневский – 10,2 процента) объемных родников с водами питьевого качества и дебитом от 1 и более литра в секунду. Исключением из сильно расчлененных местностей по числу родников (17 источников) является территория Жигулевских гор, где выше местного базиса эрозии (река Волга) лежит едрированная толща сильно трещиноватых и закарстованных карбонатных пород, а также территория муниципальных районов Шигонский и Сызранский, где определяющее влияние на образование родников оказывают благоприятные гидрогеологические условия. На юге области влияние расчлененности рельефа на условия выхода подземных вод на поверхность несколько снижается, и определяющим фактором выступают неблагоприятные для образования родников гидрогеологические условия. Однако и здесь имеющий наименьшую в области расчлененность территории м.р. Приволжский не имеет ни одного естественного родника, а приближающиеся к нему по степени расчлененности рельефа муниципальные районы Балаковский и Большечерниговский имеют по 4 родника. Изменения в химическом составе родниковых вод соответствуют общим закономерностям, определяющим состав подземных вод области. На участках неглубокого залегания горизонтов и хорошего водообмена находятся пресные воды, на участках затрудненного водообмена подземные воды приобретают повышенную минерализацию. Пресные родниковые воды приурочены к палеогеновым и верхнечеловьким отложениям (м.р. Шигонский и северная часть м.р. Сызранский), по химическому составу они отвечают требованиям СанПиН 2.1.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». Приуроченные к татарским и казанским отложениям родниковые воды, имеющие обширные выходы на поверхность земли в северо-восточной части области, характеризуются значительной пестротой химического состава и колебаниями уровня минерализации. Но и здесь преобладают источники с водой питьевого качества. В южной части области, в силу специфичности залегания подземных вод и состава водовмещающих пород, выход родников на поверхность невелик (до 10 родников в районе) и среди них единицы с пресной водой.

В целом по количеству и качеству родниковых вод на территории области можно выделить 4 группы административных районов.

1 группа – муниципальные районы с большим количеством родников и высокой долей источников с дебитом воды питьевого качества 1 и более литров в секунду: Клявлинский – 215 родников (в том числе 88 родников с дебитом воды питьевого качества один и более литров в секунду), Сергиевский – 136 родников (39), Исаклинский – 112 родников (32), Сызранский – 104 родника (28), Шенгалинский – 104 родника (26), Шигонский – 86 родников (37).

4 группа – муниципальные районы, в которых мало родников: Пестравский – 6 родников (нет), Большеглушицкий – 5 родников (нет), Балаковский – 4 родника (нет),
Большечерниговский – 4 родника (нет), Приволжский – 1 родник искусственного происхождения (нет).

2.2.2. Подземные воды

Оценка состояния ресурсной базы по Самарской области (величины запасов, добычи, извлечения и использования подземных вод) приводится на основе анализа данных за 2015 г в рамках государственного учёта подземных вод для всех типов подземных вод по целевому назначению (питьевые и технические, для поддержания пластового давления и минеральные).

Для каждого типа подземных вод приведены обобщённые данные по основным показателям учёта подземных вод на конец учётного года и их изменение за год в пределах административных районов и территории Самарской области в целом, основных водоносных горизонтов, комплексов и зон гидрогеологических структур наименьшего таксonomicкого ранга; гидрографических единиц и бассейновых округов.

В разделе дан вывод о состоянии ресурсной базы и показателях учета подземных вод различного назначения и основных изменениях за учетный год по территории Самарской области.

На территории Самарской области в 2000-2001 г. выполнена оценка прогнозных эксплуатационных ресурсов подземных вод по административным районам. Величина рассчитанных прогнозных ресурсов в целом по области составила 8780,14 тыс. м³/сут, в том числе с учетом минерализации до 1,0 г/дм³ – 6580,72 тыс. м³/сут; от 1,0 до 3,0 г/дм³ – 2032,54 тыс. м³/сут; более 3,0 г/дм³ – 166,88 тыс.м³/сут. На территории Самарской области модуль прогнозных ресурсов (минерализация менее 1 г/дм³) изменяется от 0,24 до 7,46 л/с/км², средний модуль прогнозных ресурсов изменяется от 0,38 до 8,68 л/с/км². Степень разведанности (изученности) прогнозных ресурсов питьевых вод на конец 2015 г составляет 31,9%. Обеспеченность прогнозными ресурсами подземных вод питьевого качества (в расчете на 1 человека) составляет 2,76 м³/сут.

По состоянию на 01.01.2016 г на территории Самарской области для целей хозяйственно-питьевого (ХПВ) и технического водоснабжения (ПТВ) разведано 260 участков месторождений подземных вод. Запасы на конец 2015 г. составляют 2801,105 тыс. м³/сут.

В 2015 г выполнена оценка запасов для ХПВ и ПТВ на 15 участках, в том числе на 12 новых участках. Количество оцененных запасов в 2015 г на 15 участках составило 59,363 тыс.м³/сут.

Так же в 2015 г выполнена оценка современного состояния месторождений питьевых и технических подземных вод в нераспределенном фонде недр с целью приведения их запасов в соответствие с действующим законодательством на территории Самарской области. Согласно протоколу ГКЗ № 655 от 9.12.2015 г. внесены изменения в протоколы государственной экспертизы по результатам оценки состояния месторождений (участков месторождений) питьевых и технических подземных вод. В том числе выполнено частичное списание балансовых запасов. В связи с этим, на конец 2015 г произошло уменьшение общего количества запасов подземных вод для ХПВ и ПТВ на 40,35 тыс.м3/сут.

Общее количество участков (месторождений) подземных вод распределённого фонда недр (эксплуатируемых) составляет 176, с общим водоотбором 275,7 тыс. м³/сут, в том числе на 71 водозаборе с водоотбором более 0,5 тыс м³/сут водоотбор составляет 266,256 тыс.м³/сут.
2.2.2.1. Использование подземных вод

На территории Самарской области степень освоения всех запасов подземных вод для ХПВ и ПТВ составляет 9,84%.

Изменения запасов, добычи и использования подземных вод на территории Самарской области за многолетний период наблюдений приводится на рис. 2.2.2.1.1.

Добычу подземных вод для хозяйственно-питьевого и производственно-технического водоснабжения на территории Самарской области осуществляют недропользователи, в ведении которых находятся 1815 водозаборов.

В 2015 году суммарный водоотбор подземных вод по Самарской области для ХПВ и ПТВ составил 427,972 тыс. м³/сут. По сравнению с предыдущим годом сократился на 32,47 тыс. м³/сут. Из общего количества извлеченных подземных вод использовано 400,590 тыс. м³/сут, в т.ч. на ХПВ – 318,072 тыс. м³/сут (79,4% от общего водоотбора), на ПТВ – 78,790 тыс. м³/сут (19,67% от общего водоотбора), на орошение - 2,240 тыс. м³/сут (0,56% от общего водоотбора), на другие нужды – 1,488 тыс. м³/сут (0,37% от общего водоотбора), передано другим потребителям без использования – 9,082 тыс. м³/сут (2,27% от общего водоотбора), потери – 18,300 тыс. м³/сут (4,57% от общего водоотбора).}

За последние 10 лет на территории Самарской области наблюдается ежегодное сокращение общего объема добычи и извлечения подземных вод. За период 2005-2015 гг. суммарное значение водоотбора снизилось на 309,97 тыс. м³/сут, или на 42,01%.

В учётном году общее количество используемых вод составило 400,59 тыс. м³/сут. По сравнению с предыдущим годом общее количество используемых подземных вод сократилось, в т.ч для ХПВ сократилось на 1,23 тыс.м³/сут, для ПТВ сократилось на 10,671 тыс. м³/сут. Использование подземных вод на орошение по сравнению с предыдущим годом, напротив, возросло на 1,73 тыс.м³/сут, на другие нужды использование сократилось на 0,727 тыс. м³/сут. Потери сократились на 8,022 тыс. м³/сут. Количество воды, переданной другим потребителям, без использования сократилось на 13,543 тыс. м³/сут.

За период с 2005 г по 2015 г в целом по Самарской области произошло сокращение общего использования подземных вод на 38,38%. Уменьшение использования подземных вод, по-видимому, связано с их экономным расходованием, уменьшением потерь, дорогим оборудованием и обслуживанием, а также переходом на поверхностные источники водоснабжения.

Подземные воды являются основным источником хозяйственно-питьевого водоснабжения городского и сельского населения области.

Хозяйственно-питьевое водоснабжение населения по Самарской области осуществляется за счёт подземных и поверхностных вод. Доля подземных вод в общем балансе хозяйственно-питьевого водоснабжения Самарской области составляет 42,06%.

Из городов крупных городских агломераций с населением свыше 100 тысяч в г. Новокуйбышевске хозяйственно-питьевое водоснабжение практически полностью обеспечивается подземными водами. Их доля в общем балансе хозяйственно-питьевого водоснабжения составляет 98,16%, в г.Сызрани доля подземных вод для хозяйственно-питьевого водоснабжения составляет 99,99%.

Хозяйственно-питьевое водоснабжение г. Самары базируется преимущественно на поверхностных водах р. Волги. Количество используемых подземных вод для ХПВ составляет 48,97 тыс. м³/сут, поверхностных вод -234,89 тыс.м³/сут. Доля подземных вод в общем балансе хозяйственно-питьевого водоснабжения составляет 17,25 %.

Для г. Тольятти количество используемых подземных вод для ХПВ составляет 77,782 тыс. м³/сут, доля подземных вод в общем балансе хозяйственно-питьевого водоснабжения составляет 32,41%.
График изменения запасов, добычи и использования подземных вод на территории Самарской области по состоянию на 01.01.2016 г.
Так как поверхностные воды по существу не защищены от возможного загрязнения, население г.Самары и Тольятти находится под постоянной угрозой выхода питьевых водозаборов из строя.

Использование подземных вод крупными городскими агломерациями гг.Самары, Тольятти, Сызрани и Новокуйбышевска на территории Самарской области составляет 203,429 тыс. м³/сут. Использование поверхностных вод крупными городскими агломерациями на территории области составляет 397,423 тыс. м³/сут. Доля подземных вод в общем балансе хозяйственно-питьевого водоснабжения крупными городскими агломерациями на территории области составляет 33,86%.

Хозяйственно-питьевое водоснабжение только за счёт подземных вод в пределах области осуществляется в 3 городах (Октябрьске, Похвистнево и Чапаевске) и в 21 административном районе (Алексеевском, Безенчукском, Богатовском, Борском, Елховском, Исаклинском, Камышлинском, Кинель-Черкасском, Клявлинском, Кошкинском, Красноармейском, Красноярском, Пестравском, Похвистневском, Приволжском, Ставропольском, Сызранском, Хворостянском, Челно-Вершинском, Шенталинском и Шигонском).

На территории 6 городских округов и 6 административных районов используются смешанные источники водоснабжения (подземные и поверхностные). К ним относятся: г.г. Самара, Жигулевск, Кинель, Тольятти, Новокуйбышевск, Сызрань и административные районы: Большеглушицкий, Большечерниговский, Волжский, Камышлинский, Нефтегорский, Сергиевский.

В г.Отрадный для хозяйственно-питьевых целей поверхностные воды являются единственным источником водоснабжения. Хозяйственно-питьевое водоснабжение за счёт подземных вод в г.Отрадного не организовано.

В 2015 г. добыча подземных вод для ХПВ и ПТВ составила 427,972 тыс.м³/сут. Максимальное количество воды по области в 2015 г. было отобрано в пределах Волго-Сурского (186,746 тыс. м³/сут) и Сыртовского (197,548 тыс. м³/сут) артезианских бассейнов, что в процентном отношении от общего водоотбора составило 85,05% (43,02% для Волго-Сурского АБ и (4% для Сыртовского АБ).

На территории Самарской области на 01.01.2016 г. количество разведанных участков технических подземных вод для поддержания пластового давления (ППД) на нефтяных месторождениях составило 87 с общим количеством утвержденных запасов 98 743,17 м³/сут.

В 2015 году прирост запасов составил 3344 м³/сут на 7 действующих участках АО «Самаранефтегаз».

Добыча подземных вод для поддержания пластового давления осуществляется на 68 участках. Общий водоотбор для поддержания пластового давления в 2015 г составил 18 982,477 м³/сут и по сравнению с предыдущим годом увеличился на 1521,36 м³/сут.

На 01.01. 2016 г. на территории Самарской области в пределах 8 месторождений имеется 34 участка минеральных подземных вод, в том числе 19 участков лечебно-столовой воды и 15 участков бальнеологической воды. Общее количество разведанных запасов составило 4,107 тыс м³/сут. Прогнозные ресурсы минеральных вод на территории Самарской области не оценивались. Оценка запасов в учётом 2015 году не выполнялась.

Водоотбор минеральных вод в 2015 году составил 0,135 тыс. м³/сут, в том числе на бальнеологические назначения 0,07 тыс. м³/сут и лечебно-столовые нужды (в том числе на розлив) 0,065 тыс. м³/сут. Сведения по водоотбору имеются по 16 участкам (7 участков для бальнеологических целей и 9 участков для лечебно-столовых нужд в том числе и на розлив), 14 водозаборов не эксплуатируются и по 4 водозаборам сведения по водоотбору отсутствуют. Степень освоения запасов на месторождениях минеральных вод составляет 3,28%. В учёт включены 3 водозабора минеральных вод, запасы подземных вод по ним не оценивались. На 2 водозаборах «Волжские зори» ООО «Тольяттикаучук» водоотбор осуществляется без утверждения запасов. Сведения по водоотбору по этим водозаборам
отсутствуют. Водозабор ОАО «Санаторий-профилакторий Надежда» не эксплуатируется. На участках минеральных вод наблюдательная сеть вод отсутствует.

На территории Самарской области на 01.01.2016 г. запасы разведаны на 7 участках питьевых подземных вод, использующих воды на розлив. Общее количество запасов составило 0,8778 тыс. м³/сут.

В 2015 г оценка запасов не проводилась. Прироста запасов не произошло. Общий водоотбор на участках с запасами составляет 0,283 тыс.м²/сут.

Степень освоения запасов на месторождениях питьевых вод на розлив составляет 32,24%.

В государственный учёт включены 4 водозабора питьевых подземных вод, использующих воды на розлив. Запасы подземных вод по ним не оценивались. Суммарный водоотбор в учётном году составил 0,014 тыс. м³/сут.

2.2.2.2. Режим подземных вод

В гидрогеологическом отношении Самарская область располагается в пределах Волго-Сурского, Приволжско-Хопёрского, Сыртовского и Камско-Вятского артезианских бассейнов подземных вод II порядка, входящих в состав Восточно-Русского сложного бассейна подземных вод I порядка.

Информационной основой для оценки современного состояния и прогноза изменения подземных вод в естественных и природно-техногенных условиях территории Самарской области являются данные регулярных наблюдений по государственной опорной сети (ГОНС).

В отчётом году оценка современного состояния подземных вод и прогноз его изменения в естественных и природно-техногенных условиях на территории Самарской области выполнен по результатам наблюдений ГОНС (45 наблюдательных пунктов) и объектной сети (81 пункт на объектах недропользования).

В 2015 г на участках естественного и слабонарушенного режима изменение состояния подземных вод находилось в контролируемом режиме и в пределах ранее выполненных оценок состояния подземных вод, что подтверждается данными наблюдений на государственной опорной наблюдательной сети.

Основными факторами формирования гидродинамического режима грунтовых вод в естественных условиях являются метеорологические и гидрологические.

В отчётном году в пределах артезианских бассейнов: Волго-Сурского, Приволжско-Хопёрского и Сыртовского в западной и восточной его частях накопление запасов подземных вод не произошло. Уровни по сравнению с предыдущим годом понизились. Накопление запасов подземных вод (повышение уровня) отмечено в южной части Сыртовского АБ на Южном посту.

В пределах Волго-Сурского АБ в естественных условиях по сравнению с предыдущим годом среднегодовые уровни понизились на 0,18-0,58 м. Относительно среднемноголетних значений за 42 летний период наблюдений в отчётном году среднегодовые уровни ниже на 0,18-1,14 м.

В пределах Приволжско-Хопёрского АБ среднегодовой уровень ниже уровня предыдущего года на 0,34 м. Относительно среднемноголетних значений за 75 летний период наблюдений в отчётном году среднегодовой уровень выше на 0,18 м.

В пределах Сыртовского АБ в западной его части среднегодовой уровень отчётного года понизился на 0,09-0,25 м. Относительно среднемноголетних значений за 64 летний период наблюдений в отчётном году среднегодовой уровень выше 0,45-2,22 м.

В южной части Сыртовского артезианского бассейна в 2015 г.среднегодовой уровень водоносного аллювиального верхнечетвертичного горизонта по сравнению с уровнем предыдущего года повысился на 0,1 м. Относительно среднемноголетних
значений за 34 летний период наблюдений в отчётном году среднегодовые уровни выше на 0,18 м.

В водоносном триасово-юрском комплексе по сравнению с предыдущим годом среднегодовой уровень на глубине 34,59 м повысился на 0,12 м, на глубине 4,42 м – понизился на 0,17 м. Относительно среднемноголетних значений за 34 летний период наблюдений в отчётном году среднегодовые уровни выше на 0,29-0,55 м.

В восточной части Сыртовского артезианского бассейна в 2015 г среднегодовые уровни ниже предыдущего года на 0,1-0,13 м. Относительно среднемноголетних значений за 68 летний период наблюдений в отчётном году среднегодовые уровни ниже на 0,16-0,83 м.

2.2.2.3. Качество подземных вод

Качество подземных вод на территории Самарской области формируется под влиянием ряда факторов. Часто сложно их отделить друг от друга, поскольку интенсивная хозяйственная деятельность нередко активизирует действие природных факторов, провоцирующих ухудшение качества подземных вод.

По состоянию на 01.01.2016 г на территории Самарской области по результатам ведения государственного учёта вод (ГУВа) интенсивная добыча подземных вод (более 0,5 тыс. м³/сут) осуществляется на 122 водозаборах (в том числе на 71 водозаборе, запасы по которым утверждены в ТКЗ или ГКЗ и на 51 водозаборе, добывающих воду без утверждения запасов).

На территории Самарской области по состоянию на 01.01.2016 г в процессе эксплуатации загрязнение отмечается на 32 водозаборах, в т.ч. на 21 водозаборе питьевого назначения и на 11 водозаборах для производственно-технического водоснабжения.

В 2015 г. на 11 водозаборах питьевого назначения и на 3 водозаборах производственно-технического водоснабжения загрязнение подземных вод подтверждается.

Области загрязнения на водозаборах питьевого назначения установлены в пределах городов: в Самаре, Новокуйбышевске, Чапаевске и Сызрани (Материалы по загрязнению за 2015 г). На 8 водозаборах в результате воздействия коммунальной деятельности и на 3 водозаборах в 2015 г. в процессе эксплуатации подземных вод питьевого назначения, сформировавшиеся ранее, области загрязнения в результате подтягивания некондиционных природных вод сохраняются. Эксплуатируемые подземные воды приурочены к Приволжско-Хопёрскому АБ и Сыртовскому АБ. Загрязнению подвержены подземные воды водоносных комплексов казанского и верхнекаменноугольного.

В пределах Приволжско-Хопёрского АБ в условиях эксплуатации загрязнение отмечается в подземных водах водоносного верхнекаменноугольного комплекса.

Загрязнение подземных вод в 2015 г подтверждается на Новосызранском водозаборе ООО «Сызраньводоканал». Загрязнение поземных вод отмечается в 3 скважинах (скв.7, 15 и 18) из 12. Относительно предыдущего года изменение качества в сторону ухудшения не отмечается. За период с 1992 г по 2015 г по скважине 15 минерализация увеличилась в 2,49 раз, жёсткость- в 1,41 раз.

На территории Сыртовского АБ загрязнение наблюдается в подземных водах казанского водоносного комплекса. Ухудшение качества питьевых подземных вод под воздействием подтягивания некондиционных природных вод установлено на водозаборе НФС-3- ООО «Самарские коммунальные системы» (Засамарское месторождение), на водозаборах ВНС-1 и ВНС-2 МУП Новокуйбышевское (Новокуйбышевское месторождение), на водозаборах «Губашевский», «Южный», «Титовский 1-2» «Северный» ООО «Водоканал г.Чапаевска».
На водозаборе ВНС-1 НМУП Водоканал сохраняется сложная гидрохимическая обстановка. Эксплуатируются подземные воды с минерализацией 871,2–2117,6 г/дм³ (до 2,13 ПДК), жёсткостью 12,2–28,6 мг-экв/дм³ (1,74–4,08 ПДК). Содержание сульфатов достигает 503,68–1129,16 мг/дм³ (1,01–2,26 ПДК). Максимальные значения минерализации, жесткости наблюдаются в центре водозабора.

Потенциальным источником загрязнения подземных вод на водозаборе №1 является нефтеперерабатывающий завод (Новокуйбышевского НПЗ). Водозабор №1 находится в непосредственной близости (на расстоянии менее 1 км) от крупного нефтеперерабатывающего завода. В результате технологических потерь на поверхности подземных вод на площади завода и прилегающей к ней территории образовалась линзы нефтепродуктов мощностью до 12 м. До 1997г. отмечалось постепенное расширение линзы нефтепродуктов в С, С-З и С-В направлениях, в том числе и в сторону водозабора. Затем, в связи с началом очистки подземных вод путём откачки нефтепродуктов, дальнейшее распространение их по площади не отмечается, и в настоящее время граница линзы располагается на расстоянии 300-400 м к юго-западу от водозабора №1. Концентрация нефтепродуктов в эксплуатационных скважинах 6 и 9 менее 0,005мг/дм³ и не превышают ПДК 0,1 мг/дм³. По остальным действующим 13 скважинам нефтепродукты не определяются. От техногенной залежи нефтепродуктов НПЗ существует угроза возможного загрязнения подземных вод на водозаборе ВНС-1 НМУП Водоканал. В связи с этим, необходимо вести постоянный контроль качества подземных вод с определением приоритетных показателей загрязнения подземных вод, связанных с разработкой нефтехимического предприятия. Что не выполняется в настоящее время при эксплуатации водозабора. За период эксплуатации с 1968 г минерализация изменяется от 1,12 мг/дм³ до 2,2,13 мг/дм³ (скв.16), жесткость- от 16,2 ммоль/дм³ до 28,6 ммоль/дм³.

Сложная гидрохимическая обстановка отмечается так же и на участке водозабора №2 НМУП «Водоканал». Качество подземных вод не соответствует требованиям СанПиН 2.1.4.1074-01 по показателям минерализации, общей жёсткости, содержанию сульфатов.

На водозаборах для производственно-технического и технологического водоснабжения в 2015 г также, сформировавшиеся ранее, области загрязнения подземных вод сохраняются. На 3 водозаборах области загрязнение вызвано подтяживанием некондиционных природных вод и промышленным воздействием: в г.Чапаевске (ФКП "Чапаевский механический завод", ОАО "Промсинтез"), в г.Самаре (ЗАО"Алкоа СМЗ"). Эксплуатируемые подземные воды приурочены к Сыртовскому АБ. Загрязнению подвержены подземные воды водоносного казанского комплекса.

Природное несоответствие качества выявлено в пределах Волго-Сурского АБ (водоносный неоген-четвертичный комплекс и водоносный казанский комплекс), Приволжско-Хопёрского АБ (водоносный верхнекаменноугольно-ниженепермский комплекс), и Сыртовского АБ (водоносный верхнекаменноугольно-ниженепермский комплекс). Воды не соответствуют санитарным требованиям по жёсткости, по минерализации, по железу и по сульфатам.

По состоянию на 01.01.2016 г выявлено 19 участков загрязнения подземных вод (материалы по загрязнению подземных вод за 2015 г).

Участки загрязнения подземных вод выявлены: в г.г. Самара (3 уч.), Новокуйбышевск (2 уч.), Тольятти (2 уч.), Сызрань (1 уч.) и в районах: Волжском (3 уч.),
Исаклинском (1 уч), Кинельском (1 уч.), Кинель-Черкасском (1 уч.), Красноярском (1 уч.), Похвистневском (1 уч.), Сызранском (1 уч.) и Шигонском (2 уч).

В зоне влияния участков загрязнения на подземные воды водозаборы для питьевого водоснабжения отсутствуют.

На участках загрязнения основными показателями, загрязняющими подземные воды, являются вещества 2 класса опасности: кадмий, нитриты, натрий; 3 класса опасности: аммоний, железо, марганец, нитраты; 4 класса опасности: хлориды, сульфаты, фенолы и 5 класса опасности: вещества и показатели, которые не предусмотрены в нормативных документах (СанПиН 2.1.5.980-00 – ГН 2.5.689-98) – минерализация, жесткость, нефтепродукты, окисляемость перманганатная, табл.1.19. Загрязнение подземных вод носит локальный характер и в основном ограничивается размерами источника загрязнения.

На территории Самарской области загрязнение подземных вод вещества I класса опасности не зафиксировано.

В отчетном году загрязнение подземных вод подтверждается на 3 участках по данным режимно-наблюдательной сети (в районе гидротехнических сооружений на Куйбышевском нефтеперерабатывающем заводе и на полигоне промотходов ОАО «Новокуйбышевского нефтеперерабатывающего завода (НК НПЗ)», на очистных сооружениях международного аэропорта Самара). В многолетнем разрезе наблюдений наблюдается стабильный характер загрязнения.

2.3. Почвы и земельные ресурсы

2.3.1. Общая характеристика почв

Самарская область характеризуется значительной неоднородностью почвенного покрова, что связано с ее расположением в двух природно-климатических зонах – лесостепной и степной.

Почвенный покров лесостепной зоны представлен в основном выщелоченными и типичными черноземами, среди последних значительные площади занимают остаточно-карбонатные. Относительно небольшое распространение имеют оподзоленные черноземы и серые лесные почвы.

Почвенный покров степной зоны представлен, преимущественно, обыкновенными и южными черноземами, реже – темно-каштановыми почвами, солонцами и их комплексами.

Абсолютное большинство почв области (до 80%) имеют глинистый и тяжелосуглинистый механический состав. Почвы среднесуглинистого механического состава составляют около 11% территории области, легкие почвы (легкосуглинистые и супесчаные) – 7% и песчаные – всего 2%. В лесостепной зоне в механическом составе почв нередко наблюдается присутствие крупнообломочного материала в виде щебня и камня. Южная часть области – ковыльно-типчаковые степи – распаханы и в естественном состоянии практически отсутствуют. В поймах рек – луга, преимущественно заливные.

2.3.2. Структура земельного фонда

Земли в Российской Федерации по целевому назначению подразделяются на следующие категории:

- земли сельскохозяйственного назначения;
- земли населенных пунктов;
- земли промышленности, энергетики, транспорта, связи, радиовещания, телевидения, информатики, земли для обеспечения космической деятельности, земли обороны, безопасности и иного специального назначения;
- земли особо охраняемых территорий и объектов;
- земли лесного фонда;
- земли водного фонда;
- земли запаса.

В структуре земельного фонда области наибольший удельный вес занимают земли сельскохозяйственного назначения – 76,0% и земли лесного фонда – 10,3%. На долю земель населенных пунктов приходится 6,7%, земель промышленности, транспорта и иного специального назначения – 1,3%, земель особо охраняемых территорий – 2,6%. Водный фонд области включает в себя поверхностные водные объекты, а также земли, выделенные под полосы отвода гидротехнических и иных сооружений, необходимые для использования водных объектов и составляет 3,1%. На долю земель запаса приходится 0,01% территории области.

2.3.3. Качественное состояние земель

Мониторинг земель осуществляется Федеральной службой государственной регистрации, кадастра и картографии во взаимодействии с другими федеральными органами исполнительной власти, органами исполнительной власти субъектов РФ и органами местного самоуправления. Регулирование деятельности в сфере ведения мониторинга на территории региона осуществляет Управление Федеральной службы государственной регистрации, кадастра и картографии по Самарской области.

Управление Федеральной службы государственной регистрации, кадастра и картографии по Самарской области располагает материалами инвентаризации земель населенных пунктов на площади 256,14 тыс. га, изготовленными в основном в период с 1996-2000 годов, а также материалами почвенных, геоботанических и иных специальных обследований на площадь 3818,5 тыс. га.

В 2002-2004 годах проведены работы по почвенному обследованию земель с целью создания государственного учета показателей состояния плодородия земель сельскохозяйственного назначения в границах бывших сельскохозяйственных предприятий, административным районам и в целом по области (ранее аналогичное почвенное обследование по определению «стартового» состояния пахотных земель Самарской области на 1991 год было проведено в 1991-1992 годах). Целью данной работы было определение состояния сельскохозяйственных угольдий области по признакам и свойствам, в наибольшей степени влияющим на хозяйственное использование – прежде всего таким, как содержание гумуса; реакция почв (pH); плотность (объемная масса); степень и площадь земель, подверженных водной эрозии; а также выявление и уточнение антропогенно измененных почв – нарушенных, загрязненных нефтью и ее продуктами, отходами сельскохозяйственного и промышленного производства, переувлажненных (вследствие подтопления и заболачивания) и вторично-засоленных.

В результате проделанной работы были получены показатели состояния плодородия земель сельскохозяйственного назначения за период между обследованиями, что позволило выявить динамiku изменений основных свойств и признаков почв.

На территории области наблюдается устойчивая тенденция активной деградации почвенного покрова, отражающаяся на продуктивности земель и вызывающая расширение ареалов проблемных и кризисных экологических ситуаций. Антропогенные воздействия на земли интенсивно возрастают, их негативные последствия характеризуются дальнейшим усилением процессов эрозии, подтопления, загрязнения и захламления земель, разрушения почвенного и растительного покрова. Снятие и использование плодородного слоя почвы отражено в таблице 2.3.3.1.
Таблица 2.3.3.1
Снятие и использование плодородного слоя почвы на территории Самарской области по состоянию на 01.01.2016 г.
(по данным Росприроднадзора по Самарской области)

<table>
<thead>
<tr>
<th>Субъект Российской Федерации</th>
<th>Наименование показателя</th>
<th>Единица измерения</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>Наличие заскладированного плодородного слоя почвы на 01.01.2015 г. - всего</td>
<td>тыс м³</td>
<td>9629,67</td>
</tr>
<tr>
<td></td>
<td>За отчетный 2015 г. Снятый плодородного слоя почвы: площадь</td>
<td>га</td>
<td>1969,99</td>
</tr>
<tr>
<td></td>
<td>объем</td>
<td>тыс м³</td>
<td>6636,32</td>
</tr>
<tr>
<td></td>
<td>Использовано плодородного слоя почвы</td>
<td>тыс м³</td>
<td>7087,99</td>
</tr>
<tr>
<td></td>
<td>в том числе на: рекультивацию земель</td>
<td>тыс м³</td>
<td>7057,67</td>
</tr>
<tr>
<td></td>
<td>улучшение малопродуктивных угодий</td>
<td>тыс м³</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>другие цели</td>
<td>тыс м³</td>
<td>40,32</td>
</tr>
<tr>
<td></td>
<td>Улучшено малопродуктивных угодий снятых плодородным слоем почвы</td>
<td>га</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Наличие заскладированного плодородного слоя почвы на 01.01.2016 г. - всего</td>
<td>тыс м³</td>
<td>9171,31</td>
</tr>
</tbody>
</table>

Одним из наиболее опасных видов деградации, вызывающих разрушение почв и утрату ими плодородия, является эрозия, подразделяющаяся на следующие типы: водная, ветровая (дефляция), водная эрозия и дефляция совместно, линейная эрозия.

Вследствие влияния эрозионных процессов в совокупности с другими факторами в почвах наблюдаются такие негативные процессы, как уменьшение гумусового слоя, потеря важнейших элементов питания, снижение содержания гумуса (дегумификация).

В Самарской области обеспеченность пахотных почв гумусом по состоянию на 01.01.2016 составляет 4,22%. По муниципальным районам данные приведены в таблице 2.3.3.2.

Таблица 2.3.3.2
Содержание гумуса в почвах муниципальных районов Самарской области
(по данным министерства сельского хозяйства Самарской области на 01.01.2016 г.)

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Район</th>
<th>Содержание гумуса, %</th>
<th>№ п/п</th>
<th>Район</th>
<th>Содержание гумуса, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Алексеевский</td>
<td>3,91</td>
<td>15</td>
<td>Красноармейский</td>
<td>5,03</td>
</tr>
<tr>
<td>2</td>
<td>Бензенчукский</td>
<td>3,83</td>
<td>16</td>
<td>Красноярский</td>
<td>4,9</td>
</tr>
<tr>
<td>3</td>
<td>Богатовский</td>
<td>3,8</td>
<td>17</td>
<td>Нефтегорский</td>
<td>3,9</td>
</tr>
<tr>
<td>4</td>
<td>Большеглушицкий</td>
<td>3,78</td>
<td>18</td>
<td>Пестравский</td>
<td>3,15</td>
</tr>
<tr>
<td>5</td>
<td>Большечерниговский</td>
<td>3,23</td>
<td>19</td>
<td>Похвистневский</td>
<td>5,07</td>
</tr>
<tr>
<td>6</td>
<td>Борский</td>
<td>4,5</td>
<td>20</td>
<td>Приволжский</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>Волжский</td>
<td>4,38</td>
<td>21</td>
<td>Сергиевский</td>
<td>5,63</td>
</tr>
<tr>
<td>8</td>
<td>Елховский</td>
<td>4,9</td>
<td>22</td>
<td>Ставропольский</td>
<td>4,03</td>
</tr>
<tr>
<td>9</td>
<td>Исаклинский</td>
<td>5,3</td>
<td>23</td>
<td>Сызранский</td>
<td>4,01</td>
</tr>
<tr>
<td>10</td>
<td>Камышлинский</td>
<td>6,2</td>
<td>24</td>
<td>Хворостянский</td>
<td>2,9</td>
</tr>
<tr>
<td>11</td>
<td>Кинельский</td>
<td>4,16</td>
<td>25</td>
<td>Челно-Вершинский</td>
<td>6,45</td>
</tr>
<tr>
<td>12</td>
<td>Кинель-Черкасский</td>
<td>5,3</td>
<td>26</td>
<td>Шенталинский</td>
<td>5,6</td>
</tr>
<tr>
<td>13</td>
<td>Клявлинский</td>
<td>5,12</td>
<td>27</td>
<td>Шигонский</td>
<td>4,02</td>
</tr>
</tbody>
</table>
2.4. Недропользование и охрана недр

Минерально-сырьевой потенциал недр распределен по всей территории Самарской области и представлен углеводородным сырьем, подземными водами и неметаллическими полезными ископаемыми.

Геологическое изучение недр по воспроизводству минерально-сырьевой базы Самарской области в 2015 году проводилось в соответствии с основными критериями, обосновывающими производство геологоразведочных работ, направленных на изучение недр, локализацию и оценку ресурсного потенциала полезных ископаемых по утвержденным программам ГРР за счет разных источников финансирования.

Общий объем финансирования геологоразведочных работ в Самарской области в 2015 году составил 6 740 718,3 тыс. руб.

За счет средств федерального и областного бюджетов в 2015 году геологоразведочные работы не проводились.

Недропользователи в пределах лицензионных участков за счет собственных средств выполняли поисково-оценочные и разведочные работы на нефть и газ, подземные воды, твердые и общераспространенные полезные ископаемые.

2.4.1. Углеводородное сырье

В 2015 году выполнено:
- объем глубокого поисково-разведочного бурения составил 90,3 тыс. м;
- прирост запасов по нефти по категории АВС1 по новым месторождениям и пересчету запасов других месторождений составил 20,6 млн.т, по категории запасов С2 4,8 млн.т.;
- по результатам проведенных сейсморазведочных работ подготовлено 38 структур с суммарными извлекаемыми ресурсами категории С3 в количестве 57,230 млн. т.

Углеводородное сырье Самарской области представлено нефтью, растворенным газом, свободным газом и конденсатом. Свободный газ и конденсат в настоящее время не добываются.

Запасы нефти Самарской области сосредоточены на 334 месторождениях, из них 14 месторождений являются пограничными с соседними субъектами Российской Федерации. Основной объем разведанных запасов нефти (90 %) размещён на 180 разрабатываемых месторождениях.

Прирост запасов за счет открытия новых месторождений составляет порядка 8 %, остальные 92 % - за счет разведки ранее открытых месторождений.

В нераспределенном фонде на сегодняшний день находится 29 законсервированных месторождений и 9 поднятий разрабатываемых месторождений с общими извлекаемыми запасами 45,3 млн. т.

Таблица 2.4.1.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Геологоразведочные работы</th>
<th>Годы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2011</td>
</tr>
<tr>
<td>1.</td>
<td>Объем поисково-разведочного бурения, тыс.м</td>
<td>65,6</td>
</tr>
<tr>
<td></td>
<td>в т.ч. разведочного, тыс.м</td>
<td>15,6</td>
</tr>
</tbody>
</table>
2.4.2. Неметаллические полезные ископаемые

Неметаллические полезные ископаемые делятся на твердые и общераспространенные.

Распоряжение государственным фондом недр твердых полезных ископаемых относится к полномочиям федеральных органов государственной власти или его территориальных органов, общераспространенных полезных ископаемых – к полномочиям органов государственной власти субъектов РФ. Согласно Перечню, утвержденному Распоряжением МПР России, Госгортехнадзора России и Администрации Самарской области от 24 февраля 2004 г. № 96-р/Р-3/345 к общераспространенным полезным ископаемым относятся: алевролиты, аргиллиты, алевриты (кроме используемых в цементной промышленности); битумы и битуминозные породы; галька, гравий, песчано-гравийный материал, щебень, валуны; гипс, ангидрит (кроме декоративно-поделочных и используемых в цементной и медицинской промышленности); глины (кроме бентонитовых, оgneупорных, формовочных кислотоупорных, используемых для фарфорофаянсовой, металлургической и цементной промышленности); диатомит, трепел, опока (кроме используемых в цементной и стекольной промышленности); доломиты (кроме используемых в стекольной промышленности); известняки (кроме используемых в цементной и стекольной промышленности); мел (кроме используемого в цементной, химической и стекольной промышленности); мергель (кроме используемого в цементной промышленности); песок (кроме формовочного и используемого в стекольной и цементной промышленности); песчаник (кроме используемого в стекольной промышленности); сапропели; сланцы (кроме горючих); суглинки (кроме используемых в цементной промышленности); торф.

Территориальным балансом запасов общераспространенных полезных ископаемых Самарской области на 01.01.2016 учтено 199 месторождений (по 12 видам полезных ископаемых):

<table>
<thead>
<tr>
<th>№</th>
<th>Вид полезного ископаемого</th>
<th>Распределенный фонд недр</th>
<th>Нераспределенный фонд недр</th>
<th>Всего на балансе</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Асфальтиты и битумы</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Аглопоритовое сырье</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Гипс и ангирипт</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Глины тугоплавкие</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
В распределенном фонде находится 74 месторождения, в нераспределенном фонде – 125, всего 199 месторождений, в том числе 11 месторождений являются комплексными, т.е содержат два вида полезных ископаемых.

На территории Самарской области распространены полезные ископаемые, являющиеся основой для получения горно-технического, горно-химического и минерально-строительного сырья.

Горно-техническое сырье представлено формовочными песками, бентонитоподобными глинами, цеолитодержащими породами. Формовочные пески выявлены в палеогеновых отложениях. Месторождения палеогеновых формовочных песков находятся на правобережье р. Волги.

В состав горно-химического сырья входят горючие сланцы, фосфориты, сера самородная, соль, асфальтиты и битумы.

Месторождения и проявления минерально-строительного сырья Самарской области приурочены к четвертичным, неогеновым, палеогеновым, меловым, юрским, триасовым и каменноугольным отложениям. С четвертичными и неогеновыми образованиями связана основная часть запасов и ресурсов силикатных песков и глин для производства цементного сырья.

Запасы и прогнозные ресурсы опок, стекольных песков выявлены в палеогеновых отложениях. С отложениями мелового возраста (макстритский и кампанский ярусы) связаны месторождения мела и глин для производства цемента.

В юрских образованиях открыты месторождения глин для производства цементного сырья, песков для силикатного, цементного и стекольного производства.

В пределах Самарской области в настоящее время разрабатываются следующие виды твердых полезных ископаемых: пески формовочные, цементное сырье (известняки, суглинки, глины, опоки), горючие сланцы, лечебные грязи.

Сводным балансом запасов полезных ископаемых на 01.01.2016 г. учтено 18 месторождений твердых полезных ископаемых:
- стекольного песка – 3 месторождения (нераспределенный фонд – 2);
- цементного сырья – 7 месторождений (нераспределенный фонд -2);
- горючих сланцев – 2 месторождения (нераспределенный фонд 1);
- каменной соли – 1 месторождение в нераспределенном фонде;
- серы самородной – 2 месторождения в нераспределенном фонде;
- формовочных песков – 2 месторождения (нераспределенный фонд - 1).

Разрабатываются 3 месторождения цементного сырья: «Яблоновское» (известняки), владелец лицензии ЗАО «Жигулевские стройматериалы»; «Валы» (глины и суглинки), владелец лицензии ЗАО «Жигулевские стройматериалы»; «Балашейское» (опоки), владелец лицензии ООО «БелОпока». В 2015 году добыто: известняков – 946,0 тыс.т., глин - 76 тыс.т., суглинков - 11 тыс.т, опок - 25 тыс.т...

Ведется разработка Новокашпирского участка Кашпирского месторождения горючих сланцев, владелец лицензии АО «Медхим». В 2015 году добыто 10 тыс.сланцев.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Полезное ископаемое</th>
<th>Распределенный фонд</th>
<th>Нераспределенный фонд</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Известняки на известняк</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Керамзитовое сырье</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Кирпично-черепичное сырье</td>
<td>14</td>
<td>53</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Мел</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Пески строительные</td>
<td>33</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>Песчано-гравийные материалы</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>Строительные камни</td>
<td>11</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>Торф</td>
<td>-</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Всего:</td>
<td>74</td>
<td>125</td>
<td>199</td>
</tr>
</tbody>
</table>

Осуществляется добыча лечебных грязей на месторождении «Озеро Молочка», владелец лицензии ФГБУЗ «МРЦ «Сергиевские минеральные воды». В 2015 году добыто 0,292 тыс. м³ новопульфидных грязей.

На поиски, разведку и добычу месторождений твердых полезных ископаемых на 01.01.2015 выдано 9 лицензий.

На территории Самарской области широко распространены такие экзогенные геологические процессы (далее — ЭГП) как: овражно-эрозионные, оползневые, карстово-суффозионные, абрзационные, а так же подтопление грунтовыми водами и заболевание.

Овражно-эрозионные процессы являются самым распространенным типом ЭГП на территории области. Активные овражно-эрозионные процессы приурочены к склонам водоохранилищ и долинам больших и малых рек области. Основными факторами возникновения и активного развития оврагов являются: наличие легкоразываемых грунтов, ливни и бурное весеннее снеготаяние, крутые склоны, низкий базис эрозии, экспозиция склона, значительные перепады температур, приводящие к образованию трещин в грунтах и выветриванию, уничтожение растительности, распахивание склонов и др.

На территории Самарской области оползневым процессам в той или иной степени подвержены населённые пункты, расположенные в Ставропольском, Богатовском, Кошкинском, Волжском, Кинельском, Большечерниговском, Большеглушицком, Сызранском, Красноармейском, Алексеевском районах. Оползни приурочены к склонам водоохранилищ, долинам больших и малых рек области. Оползни приурочены к склонам водоохранилищ, долинам больших и малых рек: Самара, Б. Кинель, Сок, Чагра, Б. Иргиз, и другие. Широко распространены современные оползневые процессы на территории городов Самара, Сызрань и Октябрьск.

Карстово-суффозионные процессы на территории области широко распространены в Сергиевском, Безенчукском, Шигонском, Ставропольском, Сызранском, Исаклинском, Волжском и других районах. Активность карстово-суффозионных процессов в последние годы связана как с геологическим строением, так и с изменением гидрогеологических и климатических условий.

Абразионные процессы развиваются по обоим берегам Куйбышевского и Саратовского водоохранилищ. Интенсивность процессов связана с геологическим строением береговых склонов, их высотой и крутизной, а также с гидрогеологическими и климатическими условиями района, увлажнением и ветровым режимами водоохранилищ.

Подтопление грунтовыми водами и заболевание широко распространено на территории области и связано как с естественными факторами, так и с хозяйственной деятельностью человека. Подтопление подвержены Советский и Куйбышевский районы г. Самары, западная и центральная часть г. Сызрани, жилые массивы городов Отрадный, Кинель, Октябрьск, Чапаевск, Нефтегорск, р. д. Бол. Глушица, села Кулецковка, Бариновка, Утевка, Нижнее Санчелеево и др.
В 2015 году отделом геологии и лицензирования по Самарской области - «Самаранедра» проведение регулярных наблюдений осуществлялось по наблюдательной сети на четырёх участках I-й категории и одном оползневом участке III-ей категории.

Ниже приводятся результаты регулярных наблюдений на этих участках.

Оползневой участок I категории «с. Богатое».

Главным фактором возникновения оползней в бортах оврагов является техногенное воздействие на территорию села (пригрузка бортов оврагов (строительство, бытовой мусор), утечки из водонесущих коммуникаций, полив огородов и др.). Произошел подъем уровня грунтовых вод и как следствие насыщенные водой супесчано-сулиннистые отложения начали смешаться по кровле неогеновых глин в сторону тальвегов оврагов. Оползни возникают даже по относительно неглубоким бортам оврагов. В оврагах №№1,4,5 опасных геологических процессов, развитие которых представляло угрозу разрушения жилого сектора не выявлено. В результате работ были выявлены и обследованы 3 оползня, развивающиеся в бортах оврагов №2 и №3. Оползень развивается на правом борту оврага 2, в районе жилых домов №№ 39-43 по ул. Павлова. Рельеф оползня ступенчатый, в виде отдельных блоков и бугров выпирания. Оползень развивается в левом борту оврага №3 в районе жилых домов №№119, 121 по ул.Чаапаева. Активность оползневых процессов на данном участке в 2015г была низкой, явных признаков активности оползневых смещений не отмечено. В результате воздействия оползневых напряжений дома №№123,125 по ул. Чаапаева разрушены, и жильцы отселены. Оползень развивается в правом борту оврага 3 в районе жилых домов №№ 42 -78 по ул.Громова. Оползень является самым крупным на участке «с. Богатое». Ширина по фронту оползневого борта оврага составляла ~200м, длина по оси смещения ~50м. Оползневые напряжения привели к деформациям в 13-ти жилых домах, выраженным в появлении секущих трещин на стенах зданий. Степень активности оползневых процессов в 2015г характеризуется как низкая.

Оползневой участок I категории «г. Сызрань»

Обследованием была охвачена территория восточной, центральной и южной частей города. В результате работ был обследован 61 оползнь, общая площадь которых составила ~4км². Геологическое строение, геоморфологические условия и одинаковый режим основных быстроизменяющихся факторов (осадки, температура и др.) участка обусловили одинаковый механизм возникновения и динамику оползневых процессов. На основании этого, все оползни, развивающиеся на территории участка условно объединены в три группы:

- «террасовые оползни» развивающиеся в центральной части г.Сызрани на уступе II-ой аллювиальной хвальской надпойменной террасе правобережья р.Волга. Объединение их в одну группу обусловлено геологическим строением и гидрогеологическими условиями волжского склона.

- «материковые оползни» - развивающиеся по бортам крупных оврагов и склонам долин рек Каширика и Кубра. В геоморфологическом строении долин принимают участие серьезные глины верхней юры, перекрывающие аллювиальными четвертичными отложениями супесчано-сулиннистого состава мощностью до 3м;

- «прибрежные оползни», развивающиеся в южной части г.Сызрань (п.Новокашпирский), на высоком волжском склоне Саратовского водохранилища. В геоморфологическом отношении, правый склон долины р. Волги имеет оползневой рельеф. Крупные и мелкие современные оползневые деформации развиваются на фоне древних оползней, захватив склон от уреза Саратовского водохранилища до бровки поверхности выравнивания.

В 2015г было обследовано четыре оползня развивающиеся на уступе III-ей надпойменной волжской террасе («террасовые оползни»).

Карстово-суффозионный участок I-ой категории «Самарский склон» г. Самара.

Карстово-суффозионный участок I-ой категории «п. Серноводск» Сергиевского района Самарской области.
За отчётный период было обследовано 30 карстово-суффозионных провалов образовавшихся в предыдущие годы. Новых проявлений карстово-суффозионных процессов в 2015 г. обнаружено не было. Степень активности карстово-суффозионных процессов на территории участка «п. Серноводск» характеризуется как низкая.

Оползневой участок III-категории «ул. Котовского» расположенный в г. Октябрьск.
В 2015 г. были выполнены повторные замеры бровки надоползневого уступа. По разнице расстояний от базовой линии до бровки оползня были получены величины отступания оползня вглубь массива. Степень активности оползневых процессов на участке – средняя.

Количество участков проявления карстовых и оползневых процессов на территории Самарской области, на которых министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области в целях изучения динамики и контроля опасных геологических процессов для разработки комплекса мер по предупреждению чрезвычайных ситуаций проводится мониторинг опасных экзогенных процессов, увеличилось на 6 участков и составило в 2015 году 20 участков.

Мониторинг проводился:
на участках проявления оползневых процессов: п. Управленческий, п. Южный (г.о. Самара), г.о. Октябрьск (Сызранский р-н), с. Богатырь (г.о. Жигулевск), с. Маячкино, п. Волжский Утес, п. Новодевичье, п. Актуши, с. Усолье (Шигонский р-н), п. Усть-Кинельский (Кинельский р-н), ст. Погрузная, с. Кошки (Кошкинский р-н);
За 2015 год опасных проявлений экзогенных геологических процессов, образование которых сопровождалось чрезвычайными ситуациями, на территории Самарской области не зафиксировано.
Раздел 3.
СОСТОЯНИЕ РАСТИТЕЛЬНОГО И ЖИВОТНОГО МИРА.
ОСОБО ОХРАНЯЕМЫЕ ПРИРОДНЫЕ ТЕРРИТОРИИ

3.1. Состояние растительного мира, в том числе лесного фонда

3.1.1. Состояние растительного мира

По оценке Института экологии Волжского бассейна РАН (г.о. Тольятти), разнообразие флоры Самарской области (без учета культивируемых растений) представлено порядка 2800 видами, из которых: 1705 – высшие сосудистые растения, более 185 – моховидные, около 350 – лишайники, более 500 водорослей. Кроме того в регионе насчитывается свыше 757 грибных организмов. Общая численность видового разнообразия и видов, в том числе требующих охраны, представлена в таблице 3.1.1.1.

Таблица 3.1.1.1. Видовое разнообразие растений и грибов в Самарской области

<table>
<thead>
<tr>
<th>Таксономические группы</th>
<th>Количество видов в области</th>
<th>Виды, занесенные в региональную Красную книгу</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Покрытосеменные, или цветковые растения</td>
<td>1670</td>
<td>258</td>
</tr>
<tr>
<td>Голосеменные растения</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Плауновидные</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Хвощевидные</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Папоротниковидные</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Моховидные</td>
<td>более 185</td>
<td>6</td>
</tr>
<tr>
<td>Лишайники</td>
<td>350</td>
<td>7</td>
</tr>
<tr>
<td>Водоросли</td>
<td>более 500</td>
<td>8</td>
</tr>
<tr>
<td>Грибные организмы</td>
<td>более 757</td>
<td>4</td>
</tr>
</tbody>
</table>

Многие из дикорастущих растений относятся к редким – например, адонис, каллы, сабельник болотный, повохоничек, Кузьмичева трава, папоротник костяниц волосовидный, папоротник-многоночка и др. Всего в регионе насчитывается 306 редких и исчезающих видов сосудистых растений. 226 видов растений имеют особое научное значение. К их числу относятся, в частности, астрагал Цингера, венерин башмачок настоящий, касатик карликовый, ковыль красивейший, ковыль перистый, конецник крупноцветковый, молочай жигулевский, полынь солянковидная, пыльцеголовник красный, рабич кустистый, тонконог жестколистный, чина Литвинова и шаровица крапчатая, тимьян жигулевский, которые включены в Красные книги Российской Федерации и Самарской области. Флора богата лекарственными растениями.

Естественноисторические (геологическим и геоморфологическим строением), климатические и, в целом, экологические условия послужили формированию на территории региона высокого уровня биологического разнообразия (см. таблицу 3.1.1.2): видовое разнообразие флоры Самарской области весьма значительно: здесь встречается 13,6% – сосудистых растений, 11,7% – лишайников, 8,4% – моховидных видов от числа произрастающих на территории России. Вместе с тем следует отметить, что одни группы живых организмов региона изучены довольно полно (например, сосудистые растения),
другие – лишь фрагментарно. Поэтому приведенные данные весьма приблизительны и дают лишь самое общее представление о видовом богатстве флоры региона.

Растительный покров – наиболее стабильная часть экосистемы, являющаяся отражением ландшафтной организации территории.

Таблица 3.1.1.2

<table>
<thead>
<tr>
<th>Таксономические группы</th>
<th>Число видов в России</th>
<th>Число видов в Самарской области</th>
<th>Представленность в Самарской области (в %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сосудистые растения</td>
<td>12500</td>
<td>1705</td>
<td>13,6</td>
</tr>
<tr>
<td>Мхи</td>
<td>2200</td>
<td>185</td>
<td>8,4</td>
</tr>
<tr>
<td>Лишайники</td>
<td>3000</td>
<td>350</td>
<td>11,7</td>
</tr>
<tr>
<td>Водоросли</td>
<td>9000</td>
<td>500</td>
<td>5,5</td>
</tr>
<tr>
<td>Грибные организмы</td>
<td>22000</td>
<td>757</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Выделяются следующие основные типы растительности, отражающие как зональные, так и интразональные особенности природы на территории области (в порядке уменьшения их роли в сложении растительного покрова):

1. **Степная растительность** – некогда доминировавшая в регионе, представляет собой сообщества ксерофитных травянистых растений, приуроченных, как правило, к черноземам и другим карбонатосодержащим почвам, ныне претерпела значительную деградацию. Площадь ее резко сократилась, значительно фрагментировалась и в настоящее время степи испытывают интенсивную антропогенную нагрузку, связанную с сельским хозяйством и рекреацией.

2. **Лесная растительность**, как и степная, является зональной. За период с начала XIX века произошла существенная трансформация лесов, их площадь сократилась более чем в 2 раза, изменились структура (уменьшилось участие дуба, увеличились площади осинников) и возраст (они значительно «помолодели»). Продолжают сокращаться площади реликтовых нагорных боров и дубрав в Жигулях.

3. **Луговой тип** растительности характеризуется сообществами травянистых мезофильных растений и своим происхождением обязан деятельности человека (прежде всего, вырубка лесов) или экотонности места положения.

4. **Водный тип** растительности приурочен к водной среде и характерен для рек, ручьев, озер, избыточно сырых мест (отмели, низкие поймы, лужи и т.д.).

5. **Болотный тип** растительности формируется в местах с избыточным увлажнением и приурочен к поймам рек, староречьям, водоразделам, днищам долин. В Самарской области представлен небольшими фрагментами, имеющими незначительную площадь и расположенными в Рачейском, Муранском, Раменском, Сердобинском лесных массивах в Предволжье и Красносамарском и Бузулукском лесных массивах в Заволжье.

6. **Скальный тип** растительности – уникальные для равнинных территорий растительные сообщества, приуроченные к обнажениям коренных пород.

7. **Рудерально-сегетальный тип**, являющийся результатом прямой деятельности человека, встречается в населенных пунктах, вдоль коммуникаций, включая все виды дорог, граничит с сельскохозяйственными угодьями, формируется на залежах. Эта растительность увеличивает свою площадь по мере возрастания антропогенной нагрузки на естественные сообщества.

8. **Агрикультурный тип** растительности характерен для земель, вовлеченных в сельскохозяйственный оборот и населенных пунктов (парки, скверы, сады, газоны).

В Самарской области наблюдаются процессы синатратизации (приспособление организмов к обитанию вблизи человека) флоры, вызываемой рядом факторов.
антропогенного воздействия, среди которых выделяются сельскохозяйственное
производство и интенсивная рекреация.

По состоянию на 01.01.2015 года площадь сельскохозяйственных угодий в составе

В последние годы активизировались работы по вводу в оборот ранее
неиспользуемой пашни, что способствует увеличению посевых площадей
сельхозкультур. В 2015 году в Самарской области общая посевная площадь

Кроме того, решениями собраний представителей сельских поселений
утверждаются генеральные планы сельских поселений муниципальных районов за счет
включения в границы сельских поселений земельных участков из состава земель
сельскохозяйственного назначения.

Таким образом, в области остается менее 8% брошенных земель от общей площади
пашни. Проведенные обследования данных земель показали, что часть из них залесена,
часть является малопродуктивной пашней. Поэтому разрабатывать ее и включать в
сельхозоборот экономически нецелесообразно.

В настоящее время рассматривается вопрос о переводе части залесенной пашни в
лесной фонд, а малопродуктивной – в залежь.

Традиционно зоны рекреации населения области расположены в районе водоемов,
лесных массивов, других привлекательных эстетически и наиболее ценных в
биологическом отношении местах. Высокая посещаемость этих территорий
сопровождается вытаптыванием растительного покрова и уплотнением почвы, изъятием
населением флоры (в первую очередь, цветковых растений) в бытовых целях, вырубкой
деревьев и кустарников для кострищ; по вине рекреантов возникает абсолютное
большинство лесных пожаров. Развитая сеть автомобильных и железных дорог, речные
порты и пристани позволяют относительно легко добираться до самых различных
территорий; удаленность флористических ареалов от центров расселения уже не является
фактором, обеспечивающим сохранение флоры. Из-за возрастающих потоков
грунтовых потоков в область внедряются адвентивные растения, многие из которых являются
карантинными сорняками, мощными аллергенами, как правило, агрессивно ведущими
себя по отношению к аборигенным видам. Отдельная группа причин, приводящая к
деградации естественного растительного покрова области, обеднению и антропогенной
tрансформации флоры, включает в себя несанкционированный сбор лекарственных,
пищевых, технических дикорастущих растений, изъятие имеющих декоративную
ценность растений из природных сообществ с дальнейшим использованием их в
индивидуальных целях.

Резкое отставание процессов синатропизации растений от темпов роста
антропогенного воздействия на окружающую среду привело к тому, что и для территории
Самарской области характерна общемировая тенденция к обеднению видового состава,
cокращению ареалов распространения многих видов флоры, росту числа краснокнижных
растений.

3.1.2. Состояние лесов

Общая площадь лесов Самарской области, по данным государственного лесного
реестра по состоянию на 1 января 2016 года, составила 757,2 тыс. га, покрыта лесом
площадь – 682,3 тыс. га, лесистость – 12,7%, то есть область малолесная.

Сведения о лесах области в разрезе пользователей:
Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области – 582,8 тыс. га (77,0%);
ФГБУ «Национальный парк «Самарская Лука» – 66,5 тыс. га (8,8%);
ФГБУ «Национальный парк «Бузулукский бор» – 51,3 тыс. га (6,8%);
ФГБУ «Жигулевский государственный заповедник» – 23,1 тыс. га (3,0%);
леса на землях сельхозназначения – 23,7 (3,1%);
леса в границах городских поселений (городские леса) – 9,7 тыс. га (1,3%).
Общая площадь земель лесного фонда составляет 582,8 тыс.га, в том числе покрытая лесом площадь 527,9 тыс.га. В соответствии с приказом Федерального агентства лесного хозяйства от 30.12.2008 № 435 «Об определении количества лесничеств на территории Самарской области и установления их границ» на территории лесов области образовано 18 лесничеств из них, 16 расположены на землях лесного фонда и 2 на землях иных категорий (Тольяттинское лесничество).
Расположены леса по территории области крайне неравномерно – на юге лесами занято порядка 2% от общей площади, на севере этот показатель колеблется от 22 до 25%. Все леса области по целевому назначению относятся к защитным лесам, которые подлежат освоению в целях сохранения средообразующих, водоохранных, защитных, санитарно-гигиенических, оздоровительных и иных полезных функций лесов. Леса, расположенные на землях сельхозназначения представлены, как правило, мелкими колками и участками, примыкающими к лесному фонду.
Распределение по категориям защитных лесов таково:
леса, расположенные на особо охраняемых природных территориях – 1,2 тыс. га (0,2%);
леса, расположенные в водоохранных зонах – 40,2 тыс. га (6,9%);
защитные полосы лесов, расположенные вдоль железнодорожных путей общего пользования, федеральных автомобильных дорог общего пользования, автомобильных дорог общего пользования, находящихся в собственности субъектов Российской Федерации – 13,3 тыс. га (2,3%);
зеленые зоны – 51,2 тыс. га (8,8%);
лесопарковые зоны – 56,5 тыс. га (9,7%);
леса, расположенные в первой, второй и третьей зонах городских округов санитарной охраны лечебно-оздоровительных местностей и курортов – 6,0 тыс. га (1%);
государственные защитные лесные полосы – 2,5 тыс. га (0,4%);
леса, расположенные в пустынных, полупустынных, лесостепных, лесотундровых зонах, степях, горах – 315,6 тыс. га (54,2%);
леса, имеющие научное или историческое значение – 30,7 тыс. га (5,3%);
запретные полосы, расположенные вдоль водных объектов – 50,4 (8,6%);
нерестовые полосы лесов – 14,9 (2,6%).
Отнесение к категориям защитных лесов полностью соответствует нормативным документам, экологическая роль их в регионе неоценена.
Преобладающие породы: дуб – занимает 26% от покрытой лесом площади, сосна – 14%, липа – 17%, осина – 17%, береза – 10%, остальные породы (клен, ясень, вяз, тополь, кустарники) – 16% (см. диаграмму 3.1.2.1).
Средний бонитет по сосне – I;7; по дубу – III,3; липе – III,2; осине – I,8; березе – I,9. Средняя полнота насаждений – 0,69.
Возрастная структура лесов в процентном отношении распределилась следующим образом: молодняки – 19%, средневозрастные – 41%, приспевающие – 16%, спелые – 24%. Общий запас древесины основных лесообразующих пород составляет 76,48 млн. кубометров, а спелых и перестойных 23,11 млн.кубометров, т.е. 30% от общего запаса. Общий средний прирост – 1,56 млн. кубометров.
Санитарное состояние лесов.
В 2015 году на территории лесного фонда Самарской области:
- выявлены насаждения с нарушенной и утраченной устойчивостью на площади 8483,2 га, в т.ч. погибшие - 317,5 га. Площадь насаждений с нарушенной и утраченной устойчивостью на начало 2016 года составила 47007,9 га, в том числе погибших - 3853,6 га. Проведение санитарно-оздоровительных мероприятий (далее - COM) требуется на площади 29085,7 га;
- произошло увеличение действующих очагов вредных насекомых на 31,4 тыс. га и выявлены новые очаги на площади 44,8 тыс.га. Общая площадь очагов увеличилась на 76,2 тыс. га, несмотря на затухание, под воздействием естественных факторов и ликвидацию, проведенными мероприятиями по их локализации и ликвидации, части очагов на площади 24,9 тыс. га.
Очаги вредных организмов на начало 2016 года действуют на площади 94,4 тыс. га, из них:
- 13 очагов вредных лесных насекомых на общей площади 86,8 тыс. га, в т.ч. требующих мер по их ликвидации – 77,2 тыс. га;
- 58 очагов болезней леса на общей площади 7,6 тыс. га, в том числе требующих COM - 5,5 тыс.га.
Основные вредители - непарный шелкопряд, дубовая зеленая листовертка, пилильщик-ткач звёздчатый.
Основные болезни – трутовики ложный дубовый и ложный осиновый, корневая губка сосны, бактериальное заболевание березы, голландская болезнь ильмовых.
Основные причины ослабления и гибели насаждений - лесные пожары, погодные условия и почвенно-климатические факторы, болезни леса.

3.2. Животный мир, в том числе рыбные ресурсы

3.2.1. Характеристика животного мира

Животный мир является составляющим, неотъемлемым элементом природной среды и биологического разнообразия, возобновляющимся природным ресурсом, регулирующим и стабилизирующим биосферные процессы.
В течение последних лет животный мир Самарской области, в целом, сохраняет
своё видовое разнообразие.

Таблица 3.2.1.1

<table>
<thead>
<tr>
<th>Таксономические группы</th>
<th>Количество видов в области</th>
<th>Внесено в Красную книгу</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>количество видов</td>
<td>в % от общего количества</td>
</tr>
<tr>
<td>Млекопитающие</td>
<td>86</td>
<td>17</td>
</tr>
<tr>
<td>Птицы</td>
<td>285</td>
<td>36</td>
</tr>
<tr>
<td>Рептилии</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Амфибии</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Рыбы</td>
<td>61</td>
<td>10</td>
</tr>
<tr>
<td>Насекомые</td>
<td>более 8000</td>
<td>188</td>
</tr>
</tbody>
</table>

Беспозвоночных на территории области зарегистрировано более 8 тысяч видов. Около 200 видов беспозвоночных занесены в «Красную книгу Российской Федерации»: эйзена промежуточная, дозорщик-император, дыбка степная, красотел пахучий, жук-олень, бронзовка гладкая, усач альпийский и др. На территории области выделено около 60 реликтовых видов беспозвоночных, причем подавляющее их большинство встречено только на Самарской Луке. Около 10 видов насекомых и других беспозвоночных являются условными эндемиками Самарской Луки, многие из них еще не описаны.

Земноводные – зарегистрировано 11 видов, из них 5 – краснокнижные (в том числе гребенчатый тритон, серая жаба, травянистая лягушка).

Пресмыкающиеся – насчитывается 11 видов, из них 8 – краснокнижные (в том числе болотная черепаха, ящурка разноцветная, ящерица живородящая).

Птиц на территории региона зарегистрировано 285 видов. Из них: когда-либо гнездились — 215 видов (199 – регулярно гнездящиеся, 28 – нерегулярно гнездящиеся, 5 – регулярно гнездившиеся, но переставшие гнездиться в области за период с XIX века по 1970-е гг. включительно, 7 – нерегулярно гнездившиеся, но переставшие гнездиться в области за этот же период). На пролете отмечаются 43 вида; встречаются только зимой – 8 видов, залетных видов – 31 и летующих видов – 1. В Красную книгу Российской Федерации занесено 36 видов птиц области, из которых ныне гнездятся 23 вида: скопа (Pandion haliaetus), степной лунь (Circus macrourus), европейский тобик (Accipiter brevipes), курганник (Buteo rufigularis), змеяд (Circetaus gallicus), степной орел (Aquila rapax), большой подорлик (Aquila clanga), могильник (Aquila heliaca), беркут (Aquila chrysaetos), орлан-белохвост (Haliaeetus albicilla), балобан (Falco cherrug), красавка (Anthropoides virgo), дрофа (Otis tarda), стрепет (Otis tetrax), кречетка (Chetoussia gregaria), худоючики (Himantopus himantopus), кулик-сорока (Haematopus ostralegus), большой кроншнеп (Numenius arquata), степная тиркушка (Glareola nordmanni), малая крачка (Sterna albibrons), филин (Bubo bubo), серый сорокопут (Lanius excubitor), белая лазоревка (Parus cyanus).

Млекопитающие – зарегистрировано 86 видов, из них 17 видов внесено в Красную книгу Российской Федерации.

Естественноисторические (геологическим и геоморфологическим строением), климатические и, в целом, экологические условия послужили формированию на территории региона высокого уровня биологического разнообразия.

Как видно из данных таблицы 3.2.1.2, видовое разнообразие фауны Самарской
области значительно: здесь встречается 40,7% амфибий России, 40,0% — птиц, 26,9% — млекопитающих, 22,6% — рыб, 14,7% — рептилий. Вместе с тем следует отметить, что одни группы живых организмов региона изучены довольно полно (например, млекопитающие), другие — лишь фрагментарно (например, беспозвоночные). Поэтому приведенные данные весьма приблизительны и дают лишь самое общее представление о видовом богатстве региона.

3.2.2. Состояние рыбных ресурсов

Фонд водных объектов рыбохозяйственного значения Самарской области представлен участками Саратовского и Куйбышевского водохранилищ, общей площадью акваторий 180,815 тыс. га; малыми водохранилищами — Кутулукским, Ветлянским, Черновским, Кондурчинским и другими, общей площадью 7,333 тыс. га; реками общей протяженностью 6742 км; озерами площадью акваторий 1,683 тыс. га; прудами 4,58 тыс. га.

На естественных водоемах области ведется любительское рыболовство и промысловая добыча рыбы.

Ихтиофауна рыбных водоемов Самарской области представлена более 25 видами рыб — лещ, судак, щука, плотва, чехонь, синец, густера, окунь, сом, карась, жерех, язь, белый амур, толстолобик, уклея, линь, красноперка, берш, налим, сазан, белоглазка, голавль, ерш, бычки, тюлька. Обитает речной рак.

Саратовское водохранилище. Площадь акватории при НПУ (28 м БС) в пределах Самарской области — 95 тыс. га или 51,9% от общей площади водохранилища (183 тыс. га).

Промысловый запас ВБР на Саратовском водохранилище складывается из 20 видов: лещ, судак, щука, плотва, густера, окунь, чехонь, синец, язь, красноперка, карась, берш, линь, жерех, сазан, налим, сом, уклея, толстолобик, речной рак. Однако роль отдельных видов различна. Основу промысловых ВБР составляют первые 13 видов, на долю которых приходится 96,7% запаса.

Формирование их запасов имеет во многом сходные закономерности, зависящие от структуры стада, условий размножения и нагула. Основные промысловые виды рыб водохранилища являются фитофильными, т.е. для их успешного размножения необходима залитая водой, вегетирующая или отмершая растительность и поддержание уровня воды на высоких отметках до выклева личинок и их перехода на активное питание.

При существующем гидрологическом режиме водохранилища воздействию паводковых вод подвержена огромная территория пойменных участков, особенно пойм притоков. В последние годы в период весеннего паводка уровень воды в районе г. Самара не превышает 32 м БС. Затапливаются нерестовые участки пойм с различным субстратом, используемым фитофильной группой весенне-нерестующих рыб. Наиболее благоприятны для нереста мелководные участки с глубинами до 2 м. Существует тесная связь урожайности поколений рыб и площади затопленной поймы в период нереста. В маловодные годы площадь водохранилища во время весеннего паводка увеличивается на 36 тыс. га, а в многоводные — на 60 тыс. га. По обобщенным данным высокоурожайные поколения фитофильных рыб наблюдаются в годы с уровнем весеннего паводка более 31 м.

Кроме того, фактором, оказывающим влияние на естественное воспроизводство рыб, является и изменение естественного температурного режима. В мелководных заливах водные массы прогреваются гораздо быстрее, чем в открытой зоне. Разность температур обычно бывает в пределах 8-12°. Вследствие колебания уровня воды отмечается поступление на мелководные нерестильща вод с более низкой температурой. В результате складываются неблагоприятные условия не только для нереста рыб (нерест может прерваться), но и для эмбрионального развития икры.
Немаловажное значение имеют и качественные характеристики мелководий, используемые в качестве нерестилищ. За 48 лет существования водохранилища его мелководные участки в значительной степени покрылись высшей водной растительностью. Она, произрастаая на мелководьях непрерывным поясом, образует непреодолимый барьер на путях миграций рыб к местам нереста. Требуются масштабные мелиоративные работы по выкосу высшей водной растительности.

По водности 2015 год был маловодным. Подъем уровня воды отмечен с 25 апреля и к 5 мая достиг всего 30,08 м БС (по М.С. г. Самара), что ниже среднего по водности года на 2 м. В результате более 30 тыс. га пойменных нерестовых участков не были залиты водой.

С 3 мая продолжительность стояния воды на отметках 29,9-29,7 м БС отмечена в течение 22 дней.

Благодаря относительно стабильному уровню воды в течение 22 дней (с колебаниями в пределах 20 см) и прогреву воды до нерестовых температур, по условиям размножения рыб 2015 год можно считать среднеурожайным.

Это подтверждает и результат мальковой съемки (данные Саратовского ГосНИОРХ). Общая численность молоди рыб на 1 га съемки составила 36000 экз./га, из них молоди промысловых рыб – 21000 экз./га.

Уровень воды на Саратовском водохранилище в зимний период превышал НПУ 28 м БС и держался на отметке 28,0 – 28,36 м. Зимовка ВБР прошла удовлетворительно. Заморные явления не отмечены. На отдельных мелководных участках заливов содержание растворенного в воде кислорода не опускалось ниже 3,8 мг/л.

Куйбышевское водохранилище. При НПУ (53 м БС) площадь акватории в пределах Самарской области – 85,815 тыс. га, что составляет 14,7% от общей площади водохранилища.

В пределах Самарской области находится акватория приплотинного плеса Куйбышевского водохранилища. Здесь круглогодично, исключая запретный нерестовый период, ведется промышленный и любительский лов рыбы. Из 85,115 тыс. га – рыбопромысловые участки (РПУ) площадью 63,9 тыс. га выделены под промышленное рыболовство. Состав ихтиофауны сходен с Саратовским водохранилищем. Основными промысловыми видами являются лещ, судак, берш, плотва, густера, окунь, чехонь, синец, карась, их доля в общем вылове составляет 98,4% (2015г.).

Водоемы Самарского Заволжья

Водоемы Заволжья – это озера и малые водохранилища, где ведется как промышленное, так и организованное любительское рыболовство. В 2015 году промышленное рыболовство осуществляется на РПУ площадью 3,066 тыс. га – Кутулукское водохранилище и озера Безенчукского района.

Любительское рыболовство на РПУ общей площадью 2,75 тыс. га – это малые водохранилища и пруды.

3.3. Особо охраняемые природные территории

В Самарской области сформирована уникальная сеть различных особо охраняемых природных территорий (ООПТ). Ее основу составляют ООПТ федерального значения: Жигулевский государственный природный биосферный заповедник им. И.И. Спрыгина (23,157 тысячи гектаров), Национальный парк «Самарская Лука» (127,186 тысячи гектаров), Национальный парк «Бузулукский бор» (51,288 тысячи гектаров на территории Самарской области); а также ООПТ регионального значения и ООПТ местного значения.
3.3.1. Особо охраняемые природные территории федерального значения

Жигулевский государственный природный биосферный заповедник им. И.И. Стрыгина. Заповедник расположен в Среднем Поволжье в наиболее возвышенной части Самарской Луки – Жигулевских горах. Наибольшая протяженность с севера на юг – 13 км, а с запада на восток – 29 км. В состав заповедника входят волжские острова Середы и Шалыга. Общая площадь заповедника составляет 23157 гектаров.

Ценность заповедника определяется своеобразным геологическим прошлым, уникальным ландшафтом и географическим положением на стыке различных зон и провинций, а также наличием участков девственной природы. Эти факторы определили высокое биологическое разнообразие территории, здесь охраняются места обитаний многих видов растений и животных, имеющих особое научное, эстетическое и практическое значение. Многие представители биоты заповедника являются реликтами различных геологических эпох, имеют ограниченное распространение и в силу малочисленности популяций представляют большой природоохранный интерес, вследствие чего включены в Красные книги различного ранга.

Заповедник особо отличается разнообразием растительного и животного мира.

Из 1022 видов сосудистых растений флоры заповедника признано имеющими особое научное значение 178 видов, среди которых эндемичных – 27, реликтовых – 46, включенных в Красную книгу – 17, описанных впервые со сборов на территории заповедника – 16 видов и 5 разновидностей. Узких эндемиков Жигулей, то есть растений, не встречающихся ни где в мире, насчитывается 5 видов – это Тимьян жигулевский, Качим Юзепчука, Молочай жигулевский, Ясколка жигулевская, Солнцецвет жигулевский.

Большая часть территории заповедника (95%) покрыта лесами. Основными зональными типами растительного покрова являются широколиственные леса, представленные среднерусско-приволжскими липовыми лесами с примесью других широколиственных пород (дуб, клен, ильм, вяз и др.) и горные остепнённые сососновые боры с примесью лиственных пород (береза, клен, липа, дуб и др.). Меньшую площадь занимают каменистые, кустарниковые и луговые степи, а также пойменная растительность: леса из черного тополя с примесью ветвей и вяза, тальниковые заросли и заливные луга. На своей небольшой территории заповедник сохраняет существенный фрагмент природно-территориального комплекса Самарской Луки, защищает от деградации и исчезновения массивы широколиственных лесов плато, близкий к горному ландшафту комплекс сосовых, широколиственных и смешанных лесов Жигулей с вкраплениями уникальных участков каменистых степей со скальной растительностью. Находясь на границе лесостепи и степи, в регионе с большой антропогенной нагрузкой на окружающую среду, заповедник имеет наивысшее значение в сохранении биологического и ландшафтного разнообразия.

В заповеднике достоверно зафиксированы встречи 229 видов птиц (то есть около 80% видов орнитофауны Самарской области), из которых 150 регулярно встречаются на территории и у границ заповедника. Из них оседлых видов – 30, гнездящихся перелётных – 80, зимующих – 10, остальные виды используют территорию заповедника для кормежки, а также посещают её во время сезонных миграций. Характерная черта орнитофауны заповедника – большое число видов дневных хищников и высокая численность обитателей широколиственных лесов. В заповеднике отмечено 60 видов птиц, редких для Самарской области, а 16 представителей орнитофауны включены в «Красную книгу Российской Федерации».

Чрезвычайно велика роль заповедника в сохранении млекопитающих. Современный состав фауны млекопитающих насчитывает 48 видов, относящихся
к 6 отрядам, 15 семействам и 34 родам (что составляет примерно 63% числа видов млекопитающих, обитающих в Самарской области). Максимально полно в фауне млекопитающих в заповеднике представлены отряды рукокрылых (85% видового разнообразия Самарской области), хищных (67%) и грызунов (50%). Особенно велика роль заповедника в сохранении фауны рукокрылых – здесь сформировалась крупнейшая в Восточной Европе зимовка рукокрылых. Один из представителей фауны рукокрылых заповедника (гигантская вечерница) включен в «Красную книгу Российской Федерации».

Большим разнообразием отличается также фауна беспозвоночных (более 7 тысяч видов), среди которых 14 видов признаны редкими и включены в «Красную книгу Российской Федерации», 120 видов – включены в «Красную книгу Самарской области».

Вместе с тем даже на особо охраняемых природных территориях отмечаются факты процессов деградации экологических систем. За весь период поступления (со второй половины XVIII века) научной информации о Самарской Луке здесь значительно уменьшилась площадь сосновых лесов, практически полностью исчезли высокоствольные (семенного происхождения) дубравы. Степи в большинстве были распаханы, луга испытали интенсивную нагрузку от сенокошения и пастьбы скота. В результате развития промышленности, особенно горнодобывающего производства, резко сократилось количество уникальных природных образований, уменьшились занятые естественной растительностью территории. На месте ряда горных боров, каменистых степей и скал расположены карьеры по добче нерудных материалов (Богатьерь, Могутова гора, Яблоневый овраг). Добыча нефти и связанное с ней строительство многочисленных линейных объектов (линий электропередачи, трубопроводов и дорог) привело к тому, что массивы лесов, степей, лугов и полей оказались изрезаны технологическими коридорами, нарушающими естественные пути миграции животных. Гидротехническое строительство привело к резкой деградации пойменного ландшафта с потерей большей части пойменных лесов и лугов. Выбросы в атмосферу от окружающей Самарскую Луку Самаро-Тольяттинской городской агломерации вызывают выпадение загрязняющих веществ на растительность и почву Самарской Луки, в целом, и Жигулевского заповедника, в частности. Хозяйственное освоение территории Самарской Луки нанесло существенный урон растительному и животному миру. С начала XX века здесь исчезло около 30 видов растений и животных (из млекопитающих – бурый медведь, норка европейская, выхухоль русская; из птиц – черный аист и ещё 16 видов птиц, не встречающихся здесь после 1970 года; из растений – ключик болотный, люпинник белый и др.).

На территории Жигулевского государственного природного биосферного заповедника им. И.И. Спрыгина с 30-х годов XX века осуществляет мониторинг природных процессов, ведётся обширная научная деятельность. В 2015 году выполнен 1 зимний маршрутный учет (ЗМУ) численности животных на маршруте длиной 75,5 км. Данные учета отражены в таблице 3.3.1.1.

В декабре 2015 года завершила работу XX юбилейная совместная экспедиция Жигулевского заповедника и Пензенского государственного университета по учету летучих мышей на зимовках. В течение трех недель ученые исследовали Ширяевские

<table>
<thead>
<tr>
<th>Таблица 3.3.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид</td>
</tr>
<tr>
<td>Кабан</td>
</tr>
<tr>
<td>Лось</td>
</tr>
<tr>
<td>Косуля</td>
</tr>
</tbody>
</table>

¹) Данные по численности на территории заповедника (особей).
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Волк</td>
<td>0,00</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>Рысь</td>
<td>0,00</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Лисица</td>
<td>2,62</td>
<td>60</td>
<td>23.9</td>
</tr>
<tr>
<td>Кузница</td>
<td>3.35</td>
<td>77</td>
<td>17.8</td>
</tr>
<tr>
<td>Ласка</td>
<td>0,00</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Горностай</td>
<td>0,00</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Белка</td>
<td>0,00</td>
<td>0</td>
<td>9.9</td>
</tr>
<tr>
<td>Заяц-</td>
<td>15,88</td>
<td>365</td>
<td>126,7</td>
</tr>
<tr>
<td>беляк</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"За последние 10 лет (2006–2015 гг.)

штольни – обширные промышленные подземные выработки середины прошлого века в Жигулевских горах по добыче известняка. После прекращения подземных работ штольни были заброшены и только спустя десятилетия были переданы под охрану Жигулевскому заповеднику. Постепенно подземные пустоты заселили летучие мыши, а в настоящее время здесь находится крупнейшая зимовка в России.

Общая протяженность ежегодного подземного учетного маршрута составляет 36 км. По данным декабрьского учета общая численность зимующих зверьков составила 28,8 тыс. особей, что несколько ниже ее рекордного значения в 2013 году – 30 тысяч особей.

Продолжались работы в рамках подготовки Второго Европейского Атласа гнездящихся птиц и Атласа гнездящихся птиц Европейской России. Исследования проводились на территориях м.р. Ставропольский, Волгский, Белогорск, Красноворский, Кинельский, Кошкинский, Елховский, Большеустьянский и Большеметелевский в границах квадратов 39UU3, 39UV3, 39UV4, 39UVA4, 39UV1, 39VV1, 39VV3 европейской части России (научный руководитель к.б.н. Лебедева Г.П.). Цель работы - составление списка видов птиц, встречающихся в каждом квадрате в гнездовой период с указанием их статуса и оценкой численности.

В результате исследований получены новые данные о видовом составе и распределении птиц Самарской области, о состоянии их мест обитания.

В том числе сведения о редких для области видах: большой белой цапле, лебеде-шипуне, огаре, могильнике, орлане-белоголовом, ходулочнике, усатой синице, обыкновенном ремезе, белокрылой крачке, чернолобом сорокопуте. Выявлены новые для области виды.

Осуществление мониторинговых исследований в 2013, 2014 и 2015г. позволило выявить базовый список видов высших растений, которые формируют растительные ассоциации.

С учетом трехлетнего выявления видов, наиболее активно участвующих в образовании аспекта в различные сроки в пределах вегетационного периода, установлено произрастание на научных стационарах (НС) в зоне экскурсионной тропы высших растений 160 видов, относящихся к 130 родам и 39 семействам. По сравнению с предыдущими исследования количество видов и семейств растений, произрастающих на исследованной территории сократилось.

Ведущие 10 семейств, лидирующие по числу видов: Asteraceae, Poaceae, Papilionaceae, Brassicaceae, Rosaceae, Caryophyllaceae, Liliaceae, Apiaceae, Rubiaceae, Lamiaceae.

Среди выявленных 160 видов представлено 24 раритетных, в том числе 24 вида,
включенных в Красную книгу Самарской области, 5 видов, включенных в Красную книгу РФ.

Достаточно длительное воздействие рекреации, начавшееся задолго до строительства экскурсионного настила, привело к внедрению в растительный покров НС видов-рудералов. Их число составляет 15, они присутствуют практически на всех пробных площадях и трансектах НС.

В процессе обследования 2015 г. были скорректированы геоботанические описания растительных сообществ на трансектах и учетных площадках, включавшие оценку нарушенности почвенно-растительного покрова, вытоптанности, каменистости. Было установлено, что на пробных площадках НС в формировании растительного покрова участвует от 43 до 60 видов.

Растительный покров, нарушенный в процессе строительства настила, восстанавливается под настилом за счет разрастания особей, располагающихся вблизи настила, и развития образовавшихся всходов. На пробных площадях, граничащих с лесными сообществами, в этом наиболее активно участвуют кустарниковые виды (Euonymus verrucosa, Cotoneaster melanocarpus, Cerasus fruticosa, Rosa majalis) и такие травянистые растения как Hieracium virosum, Vincetoxicum stepposum, лазурник трехлопастной «врастающие» под настил и выходящие из-под него. На пробных площадях, граничащих со степными сообществами, основное участие в восстановлении растительного покрова принимают Scorzoner a hispanica, Hieracium virosum, Potentilla arenaria, Thymus zhegulensis, Echinops ritro, Carex pediformis, Centaurea carbonate, Gypsophila juzepczukii, Elytrigia lolioides, Artemisia campestris.

Отмеченные в прошлом (2014) году процессы зарастания нарушенных территорий на многих пробных площадях не смогли полноценно реализоваться в 2015 году. Планомерное зарастание и общее сокращение нарушенных территорий наиболее успешно происходило только на таких участках, где рельеф и общее развитие растительного покрова препятствуют выходу экскурсантов с настила на открытую поверхность. На ряде пробных площадей наряду с процессами зарастания нарушенной территории происходит и вытаптывание. Посетители в поиске лучших видов покидают настил и протаптывают новые тропинки к обзорным точкам на склоне, а также в поиске мест для уединения. К сожалению, экскурсанты покидают настил в любых местах, где им это удобно сделать.

Местами происходит также восстановление нормального состояния лишайникового покрова: лишайниковое сообщество каменистых степей, во время покраски настила, покрытые с поверхности слоем краски, постепенно освобождаются от нее и приобретают естественный облик.

В 2015 году ФГБУ «Жигулевский государственный заповедник» в сфере эколого-просветительской деятельности и развития познавательного туризма проведены следующие мероприятия:

музей заповедника посетило 3150 человек, визит-центры – 12932 чел.;
эколого-просветительские мероприятия (количество участников – 1556 человек) - «Экобудущее»: детский профильный экологический лагерь, Областной Слет друзей Жигулёвского заповедника, Экспедиция по местам пожаров, учебно-просветительских занятиях со школьниками, День эколога, День работников леса, День птиц; Акция «Чистый берег» и др.

Два экскурсионных маршрута заповедника посетило 173 организованных группы
(4370 человек); общее количество человек, посетивших территорию заповедника в целях познавательного туризма в 2015 году, составило 53350 человек.

В 2015 году построен и запущен первый объект экскурсионно-познавательного комплекса «Бахилова Поляна» - «Городок барсуков».

Национальный парк «Самарская Лука».

Уникальность природного комплекса национального парка «Самарская Лука» заключается в сосредоточении на относительно небольшой территории практически всех типов растительных сообществ, характерных для Русской равнины. Геологическое прошлое и редкое для Русской равнины проявление тектонической активности обусловили значительное разнообразие типов рельефа – от Жигулевских гор и эрозионно-денудационных крепящихся возвышенностей до слабоволнистых надпойменных террас и волжских пойм. Расположение Самарской Луки на границе степной и лесостепной зон и своеобразное географическое положение определяют уникальное сочетание степных, лесных, луговых и прибережноводных экосистем. Общая площадь национального парка – 127,186 тысячи гектаров, из которых площадь Государственного лесного фонда –66,486 тысячи гектаров, сельскохозяйственных предприятий – 60,7 тысячи гектаров, других землепользователей – 2,626 тысячи гектаров.

На всей территории национального парка выделено четыре функциональные зоны и установлен дифференцированный режим их охраны, защиты и использования с учетом местных природных, историко-культурных и социальных потребностей: 1. Заповедная зона (площадь 8,9 тыс. га) – запрещена любая деятельность, кроме научных исследований; 2. Особо охраняемая зона (29,6 тыс. га) – запрещена любая деятельность, кроме посещения в целях познавательного туризма; 3. Рекреационная зона обслуживания посетителей, познавательного туризма (57,0 тыс. га) – запрещена любая деятельность, способная нанести ущерб природным комплексам и объектам растительного и животного мира, культурно-историческим объектам и противоречащая целям и задачам национального парка; 4. Хозяйственного назначения (32,5 тыс. га) – запрещена любая деятельность, способная нанести ущерб природным комплексам и объектам растительного и животного мира, культурно-историческим объектам и противоречащая целям и задачам национального парка.

Современные экосистемы Самарской Луки являются рефугиумом, территорией – убежищем для большого числа вымирающих растений и животных, которые пережили неблагоприятный период геологического времени. Во флоре Самарской Луки отмечено 1302 вида сосудистых растений, среди которых 102 вида относятся к эндемикам и 60 видов – к реликтовым растениям. Крайне редкими являются 44 вида сосудистых растений.

Природные особенности парка в общих чертах сходны с Жигулевским заповедником. Степень сохранности природных территориальных комплексов на территории парка ниже, чем на территории Жигулевского заповедника, при этом видовое разнообразие национального парка богаче за счёт пойменных видов. Географическое положение местности определяет особенности фаunistического комплекса Самарской Луки, его уникальность. Одно трети отмеченных здесь видов позвоночных животных встречаются на границе своих ареалов. Большинство видов животных западно-европейского фаunistического комплекса не встречаются юго-восточной территории Самарской Луки. Для многих позвоночных животных таежного комплекса по территории Самарской Луки проходит западная граница ареала. На территории национального парка произрастают около 1300 видов сосудистых растений, при этом 102 вида из названной
группы являются эндемиками. 10 из 61 вида млекопитающих, обитающих на Самарской Луке, занесены в Красные книги РФ и Самарской области. На территории национального парка на протяжении отмечены 213 видов птиц, гнездящихся на территории парка 150 видов, в Красные книги РФ и Самарской области занесен 31 вид. Пресмыкающиеся представлены 9 видами, 6 из них занесены в Красную книгу Самарской области. Из 8 видов земноводных, 2 включены в Красные книги РФ и Самарской области. В водах Куйбышевского и Саратовского водохранилищ, омывающих территорию Самарской Луки и пойменных водоемах, образованных этими водохранилищами, обитает 54 вида рыб.

Среди млекопитающих, встречающихся на территории национального парка и занесенных в «Красную книгу Российской Федерации», отмечаются русская выхухоль и гигантская вечерница, занесенные в «Красную книгу Самарской области» – обыкновенная кутора, ночница Наттерера, малая вечерница, неторопы-карлик, северный кожанок, поздний кожан, обыкновенный слепыш, речная выдра.

Среди птиц из «Красной книги Российской Федерации» и «Красной книги Самарской области» встречается чернозобая гагара, большая белая цапля, лебедь-шипун, огарь, пеганка, скопа, степной лунь, курганник, змеевид, рёл-карлик, большой подорлик, могильник, беркут, орлан-белохвост, болотная черепаха, живородящая ящерица, медянка обыкновенная, узорчатый полоз, водяной уж, гадюка обыкновенная. Из земноводных «Красной книги Российской Федерации» встречается съедобная лягушка, травяная лягушка.

Среди пресмыкающихся на территории парка встречаются болотная черепаха, живородящая ящерица, медянка обыкновенная, узорчатый полоз, водяной уж, гадюка обыкновенная. Из земноводных «Красной книги Российской Федерации» встречается съедобная лягушка, травяная лягушка.

По данным зимнего маршрутного учета животных, полученных при проведении ЗМУ в зимний сезон 2014-2015 гг., численность основных охотничьих-промысловых животных, в целом, не претерпела значительных изменений (см. табл. 3.3.1.2).

Разнообразие форм рельефа, вызванное тектоническими процессами и, соответственно, большое многообразие почв, обусловили формирование различных типов лесорастительных условий. Лесостепи, редколесья, опушечные комплексы и агроценозы занимают более одной трети территории. Более половины (51,1%) от всей площади Самарской Луки занимают лесные экосистемы, преимущественно широколиственные леса.

Таблица 3.3.1.2

<table>
<thead>
<tr>
<th>№</th>
<th>Вид</th>
<th>Численность за отчетный период</th>
<th>Плотность за отчетный период, особей на 1000 га</th>
<th>Среднемноголетние данные по численности (особы) 2008 – 2015 г.г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кабан</td>
<td>566</td>
<td>8,52410</td>
<td>441,8</td>
</tr>
<tr>
<td>2</td>
<td>Косуля</td>
<td>469</td>
<td>7,06325</td>
<td>160,6</td>
</tr>
<tr>
<td>3</td>
<td>Лось</td>
<td>92</td>
<td>1,38554</td>
<td>88,6</td>
</tr>
<tr>
<td>4</td>
<td>Волк</td>
<td>2</td>
<td>0,03012</td>
<td>4,2</td>
</tr>
<tr>
<td>5</td>
<td>Рысь</td>
<td>0</td>
<td>0,0</td>
<td>1,2</td>
</tr>
<tr>
<td>6</td>
<td>Лисица</td>
<td>214</td>
<td>1,66929</td>
<td>233,2</td>
</tr>
<tr>
<td>7</td>
<td>Куньца</td>
<td>100</td>
<td>1,609375</td>
<td>102,8</td>
</tr>
<tr>
<td>8</td>
<td>Норка</td>
<td>0</td>
<td>0,0</td>
<td>30,4</td>
</tr>
<tr>
<td>9</td>
<td>Хорь лесной</td>
<td>0</td>
<td>0,0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Горностай</td>
<td>0</td>
<td>0,0</td>
<td>5,6</td>
</tr>
<tr>
<td>11</td>
<td>Ласка</td>
<td>0</td>
<td>0,0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Белка</td>
<td>0</td>
<td>0,0</td>
<td>238,8</td>
</tr>
<tr>
<td>№</td>
<td>Вид</td>
<td>Численность за отчетный период</td>
<td>Плотность за отчетный период, особей на 1000 га</td>
<td>Среднемноголетние данные по численности (особей) 2008 – 2015 гг.</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Заяц-беляк</td>
<td>491</td>
<td>7,39458</td>
<td>856,5</td>
</tr>
<tr>
<td>14</td>
<td>Заяц-русак</td>
<td>417</td>
<td>7,31579</td>
<td>448,6</td>
</tr>
</tbody>
</table>

Развитие в вегетационном сезоне 2015 года главных патологических агентов основных лесообразующих пород не выходило за средние многолетние значения. Повреждение дуба зеленой дубовой листоверткой в насаждениях, произрастающих на территории национального парка, достигало 50 – 60%, при степени поражения от 20 до 40%. В большей степени повреждались растения, произрастающие в разреженных сухих дубравах. В смешанных свежих и влажных дубравах и липняках развитие зеленой дубовой листовертки было незначительным. Вновь отрастающие после повреждения листоверткой листва и побеги повреждались фитопатогенными грибами, вызывающими мучнистую росу. Максимальная степень поражения растений дуба мучнистой росой наблюдалась в свежих и сырьих насаждениях. Состояние липы мелколистной оценивается как удовлетворительное. Повреждение клена остролистного, произрастающего в чистых и смешанных по составу древостоях, вредителями и заболеваниями за прошедший период не отмечалось.

Для осуществления эколого-просветительской деятельности в национальном парке созданы эколого-просветительский центр «Самарская Лука» и информационный центр «Дом-музей Лисы» в г.Жигулеевске; информационный центр в г.Самара; информационные центры в конторах лесничеств (в сёлах Ширяево, Б.Рязань, С.Солонец, Бахилово, Подгоры, Рождествено, Жигули, Мордово), в 2015 году открыт информационный центр «Музей летучей мыши» в с.Ширяево. В мероприятиях, организованных и проведенных национальным парком приняли участие свыше 140 тыс. человек. Подготовлено 135 научно-популярных и пропагандистских статей о Национальном парке. Опубликовано 482 статьи в различных электронных СМИ. Персональный сайт национального парка за год посетило более 100 000 человек.

Национальный парк «Бузулукский Бор»

земли национального парка имеют внутреннее зонирование и представлены следующими функциональными зонами:
1. Заповедная зона;
2. Особо охраняемая зона;
3. Рекреационная зона;
4. Учебно-производственная зона;
5. Хозяйственная зона.

Площадь бора на территории Самарской области – 51.288 тысячи гектаров (в том числе м.р. Борский – 43389.97 га; м.р. Богатовский – 7754,51 га; м.р. Кинель-Черкасский – 144 га). Общая площадь хвойных древостоев достигает 50% от всей площади бора. Более двух третей массива занято разнотравными сосновыми и смешанными лесами. Сосновый бор со всех сторон окаймлен полосой лиственного леса,граничащего с безлесной степью.

Бузулукский бор скрепляет корнями своих деревьев восьмьдесят тысяч гектаров песков, глубина залегания которых достигает в некоторых местах 90 метров. Гидрографическую сеть бора и его окрестностей, кроме реки Самара с притоками, характеризует также и большое количество пойменных озер.

Сосновые древостои бора – активный фактор торможения ветровой эрозии в окружающих его районах. Способствуя выпадению дождей и накоплению снега, благоприятствуя переводу поверхностных тальных вод в грунтовые, бор сдерживает водную эрозию почв и регулирует запасы воды в бассейнах рек Боровка, Чертаклы, Муштая, Колтубань, Таневка и другие.

В национальном парке сформировалась богатая самобытная флора со значительным числом редко встречающихся в степной зоне видов растений. Леса распределяются по следующим группам: лишайниковые сосны (на вершинах дюн, характерно разнообразие эпигейных лишайников), мхи сосновки (склоновые ландшафты и припойменные террасы, в травостое господствуют представители мохообразных, встречаются представители мезофильного разнотравья), ложнотравянные боры (положение восточного и южного, более разнообразен травянистый ярус с подлеском из степных кустарников), сложные боры (ровные места или неглубокие пониженные между донами, в сложении древесного яруса кроме сосны важную роль играют и другие породы, образующие второй ярус), дубняки (обращенные на юг пологие склоны и ровные места уже почти за пределами котловины национального парка, доминирование в древесном ярусе дуба обыкновенного с густым травяным покровом с изобилием папоротников), типы мягких пород (березняки, осинники и ольшанники в пониженных формах рельефа с уникальной травянистой растительностью). В парке развита травянистая растительность: степные участки, большое количество лугов и полян, сложенных разнообразными видами многолетних травянистых растений.

За более чем столетнюю историю исследования растительного покрова Бузулукского бора для его территории упоминался 901 вид сосудистых растений, относящийся к 404 родам и 103 семействам. Поскольку flora – это сложная, постоянно меняющаяся система, то составляемые флористические сводки способны отразить ее состояние только на определенный момент. В современном растительном покрове Бузулукского бора зарегистрировано 668 видов сосудистых растений, относящихся к 351 роду 94 семейств. На территории бора обитают 55 видов млекопитающих, около 180 видов птиц, 6 видов амфибий, 24 вида рыб. Из общего числа обитателей бора
некоторые виды находятся под охраной и занесены в Красную книгу РФ, Оренбургской и Самарской областей.

По данным учета животных, ежегодно проводимого на территории национального парка, по сравнению с предыдущим учетным периодом, в 2015 году отмечается увеличение численности особей лося, кабана, косули. Случаев АЧС и бешенства не выявлено.

Климат бора благоприятен для рекреации и туризма и характеризуется следующими положительными показателями: большая продолжительность солнечного сияния; относительно более комфортные условия для отдыха по сравнению с окружающими степными и лесостепными районами (меньшая скорость ветра, пониженная температура и повышенная влажность воздуха в жаркие летние дни); устойчивый снежный покров под пологом леса и отсутствие сильных зимних ветров обусловливают комфортные условия для зимнего отдыха; отсутствие промышленных предприятий и удаленность бора от источников загрязнения определяют хорошее качество атмосферного воздуха.

В 2015 году на территории национального парка возникло 11 лесных пожаров, в том числе в границах Самарской области – 8, на общей площади 57,81 га, в том числе один крупный пожар в Борском участковом лесничестве на площади 53,1га.

Силами сотрудников национального парка в 2015 году было предотвращено 23 перехода пожаров с прилегающей территории к национальному парку, из которых 20- на территории Самарской области.

В целях предупреждения и распространения лесных пожаров в 2015 году по Самарской части национального парка проведено ряд мероприятий:
- уход за минерализованными полосами – 764 км;
- ремонт мест забора воды – 5 шт.;
- расчистка просек и дорог противопожарного назначения – 123 км.
- отремонтировано дорог противопожарного назначения – 24,7 км
- установлено и отремонтировано шлагбаумов, ограничивающих съезд дорог общего пользования – 65 шт.
- установлено аншлагов на противопожарную тематику – 99 шт.
- приобретено 4 автомобиля повышенной проходимости, из которых два малых лесопатрульных комплекса.

При осуществлении эколого-просветительской деятельности систематически проводятся беседы на противопожарную тематику.

С целью снижения инфекционного фона болезней, предотвращения возникновения очагов вторичных вредителей, увеличения рекреационных показателей и уменьшения потерь древесины в 2015 году проведены санитарно-оздоровительные мероприятия на площади – 886,6 га, в т.ч. по Самарской части национального парка: выборочные санитарные рубки – 356,5 га, сплошные санитарные рубки – 73,5 га.

На территории национального парка функционирует 3 школьных лесничества: Борское школьное лесничество «Борок», Богатовское школьное лесничество «Ойный эколог», Колтубанское школьное лесничество «Зеленый патруль». Так же в учреждении организован экологический кружок «Росточек».

За период 2015 года организовано дополнительно 2 оборудованных места отдыха, 1 стоянка для палаточного лагеря, 2 парковки для автомашин, 1 смотровая площадка.

Проводятся экологические акции, направленные на привлечение внимания к проблемам охраны природы, повышение экологической культуры людей: «Покормите птиц», Возрождение родника «Заповедный», акции по очистке и благоустройству
территории национального парка. Общее количество человек, посетивших территорию национального парка в целях туризма и отдыха за 2015 год - 11752 человека.

3.3.2. Особо охраняемые природные территории регионального значения

Система особо охраняемых природных территорий регионального значения в Самарской области в настоящее время представлена одной, самой многочисленной категорией ООПТ – памятниками природы регионального значения (на начало 2016 года в Кадастр ООПТ Самарской области включены 208 памятников природы регионального значения). Это – участки земли, водной поверхности и воздушного пространства над ними, где располагаются природные комплексы и объекты, которые имеют особое природоохранные, рекреационное, оздоровительное, научное, культурное и экономическое значение, для которых установлен оптимальный природоохранный режим, обеспечивающий рациональное природопользование на их территории. Доля площади ООПТ регионального значения в общей площади территории Самарской области на конец 2015 года составила 1,69%.

Памятники природы располагаются во всех районах области. Наибольшее их число находится в муниципальных районах Ставропольский, Волжский, Сызранский, Алексеевский, Кинельский, Шигонский, Камышлинский. Наиболее ценными в пределах Приволжской лесостепи являются участки сосново-широколиственных лесов в муниципальном районе Сызранский на границе с Ульяновской областью (Рачейский бор) и уникальный лесной массив в муниципальном районе Шигонский – Муранный бор (расположен к северу от Усинского залива, занимает левобережную террасу реки Усы). Эти лесные массивы отнесены к Средне-Волжскому комплексному биосферному резерву. Здесь обитают несколько десятков видов животных и растений Красной книги РФ. Резервирование территорий ландшафтными заказниками «Рачейский бор» и «Муранный бор» поможет сохранить эти уникальные природные сообщества. Большую ценность представляют расположенные в муниципальном районе Большечерниговский урочища «Грызлы» и «Мулин дол» – это самые крупные участки степи в Самарской области. Уникальным сообществом степной растительности, солонцовых, солончаковых и вновь-болотных компактов является урочище «Майтуга» (м.р. Безенчукский), где также требуется расширение площади существующего памятника природы. Территория Сусканского залива Куйбышевского водохранилища, эксплуатируемая рыбоводным комплексом «Сускан», интересна исключительно с орнитологической точки зрения. Она включена в реестр ключевых орнитологических территорий международного значения и не имеет аналогов в средней полосе Европейской части России.

Все ООПТ регионального значения являются местами обитания видов растений и животных, занесенных в Красные книги Российской Федерации и Самарской области, большинство из них представляет крупные массивы хорошо сохранившихся природных сообществ.

Государственное управление в области организации и функционирования памятников природы, в соответствии с Законом Самарской области от 06.04.2009 № 46-ГД «Об охране окружающей среды и природопользовании в Самарской области» и Положением о Министерстве (утверждено постановлением Правительства Самарской области от 09.10.2013 года № 528), осуществляет Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области (Министерство).

Перспективной схемой развития ООПТ регионального значения предусмотрено создание природных парков, заказников, памятников природы на площади 174 300 га, в том числе на значительной площади должна быть проведена оптимизация природоохранных режимов на территории существующих ООПТ регионального значения.

В 2015 году Постановлением Правительства Самарской области от 06.07.2015 № 407 «Об утверждении положений об особо охраняемых природных территориях регионального значения» утверждены Положения 3 памятников природы регионального
значения, площадь которых составляет 1023,2 га; также упразднены четыре памятника природы регионального значения Постановлением Правительства Самарской области от 25.06.2015 № 373 «Об упразднении памятников природы регионального значения «Тополь вековой», «Нефтяная скважина № 8», «Нефтяная скважина № 10» и «Ново-Усмановская сероводородная вода». Постановлением Правительства Самарской области от 19.06.2015 № 356 «О реорганизации в форме изменения границ памятника природы регионального значения «Муранский бор» изменена площадь ООПТ с 1907,93 га на 1922,17 га.

На конец 2015 года постановлениями Правительства Самарской области утверждены Положения 208 памятников природы регионального значения, площадь которых составляет 90,32 тыс. га.

Перечень ООПТ регионального значения представлен в таблице 3.3.2.1.

Таблица 3.3.2.1
Перечень особо охраняемых природных территорий регионального значения

<table>
<thead>
<tr>
<th>№№ п/п</th>
<th>Наименование ООПТ</th>
<th>Площадь (га)</th>
<th>Местонахождение (административный район (ы))</th>
<th>Правоустанавливающий документ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Березовый овраг</td>
<td>252,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>2</td>
<td>Герасимовская дубовая роща</td>
<td>33,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Грековский лес</td>
<td>28,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Колок «Дубовый»</td>
<td>4,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Лесной колок «Попов дол»</td>
<td>4,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Овраг «Бирючий»</td>
<td>158,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Родник «Первокоммунарский»</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Родник истока р. Съезжая</td>
<td>34,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Урочище «Богатырь»</td>
<td>220,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Александровская пойма</td>
<td>311,80</td>
<td></td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>11</td>
<td>Васильевские острова</td>
<td>5077,88</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>13</td>
<td>Майтуганские солонцы</td>
<td>2529,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Озеро Боровое</td>
<td>465,21</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>16</td>
<td>Урочище 'Макарка'</td>
<td>41,94</td>
<td></td>
<td>№481 от 28.12.1989</td>
</tr>
<tr>
<td>17</td>
<td>Кутулукская дубрава</td>
<td>74,90</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>18</td>
<td>Кутулукские ярь</td>
<td>152,86</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>19</td>
<td>Урочище "Ильмень"</td>
<td>105,92</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>20</td>
<td>Урочище "Каменное"</td>
<td>101,91</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>21</td>
<td>Истоки р. Каралык</td>
<td>207,90</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>22</td>
<td>Колок "Дубовенький"</td>
<td>234,04</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>23</td>
<td>Попов сад</td>
<td>206,32</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>24</td>
<td>Фрунзенско-Каралыкская лесная полоса</td>
<td>347,66</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>№ № п/п</td>
<td>Наименование ООПТ</td>
<td>Площадь (га)</td>
<td>Местонахождение (административный район (ы))</td>
<td>Правоустанавливающий документ</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>27</td>
<td>Дол Верблюдка</td>
<td>75,80</td>
<td>№657 от 22.12.2010</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Истоки реки Большой Иргиз</td>
<td>204,50</td>
<td>№722 от 23.12.2009</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Каменные лога №1,2,3</td>
<td>35,29</td>
<td>№657 от 22.12.2010</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Кошкинская балка</td>
<td>319,70</td>
<td>№722 от 23.12.2009</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Сестринские окаменелости</td>
<td>255,66</td>
<td>№657 от 22.12.2010</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Урочище Мулин дол</td>
<td>5090,02</td>
<td>№657 от 22.12.2010</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Участок Типчаково-Ковыльной целинной степи</td>
<td>931,95</td>
<td>№768 от 16.12.2013</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Геологические отложения триаса</td>
<td>9,00</td>
<td>Борский</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Гостевский шихан</td>
<td>10,80</td>
<td>№722 от 23.12.2009</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Неприкский борок</td>
<td>50,60</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Урочище «Марьин пупок»</td>
<td>28,10</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Урочище «Мечеть»</td>
<td>5,20</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Березовый древостой естественного происхождения</td>
<td>229,89</td>
<td>№566 от 25.09.1967</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Генковская лесополоса кв. 28-32</td>
<td>550,50</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Генковская лесополоса кв.35-38</td>
<td>423,61</td>
<td>№566 от 25.09.1967</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Генковская лесополоса кв.42-43</td>
<td>242,39</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Генковские лесные полосы, кв. 25 - 26</td>
<td>267,05</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Дубрава естественного происхождения</td>
<td>430,21</td>
<td>№768 от 16.12.2003</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Заливы острова Тушинский</td>
<td>335,95</td>
<td>№201 от 14.06.1989</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ковыльная степь</td>
<td>154,93</td>
<td>№768 от 16.12.2013</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Озеро Яицкое</td>
<td>194,44</td>
<td>№838 от 29.12.2012</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Преображенская степь</td>
<td>727,46</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Генковская лесополоса кв. 15 -23</td>
<td>876,33</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Колок Кругленький</td>
<td>1,00</td>
<td>ГО Кинель</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Генковская лесополоса кв.75-80</td>
<td>540,70</td>
<td>ГО Новокуйбышевск</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Древостой дуба</td>
<td>35,11</td>
<td>№6 от 19.04.1983</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Древостой дуба естественного происхождения</td>
<td>78,52</td>
<td>№838 от 29.12.2012</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Куйбышевский ботанический сад</td>
<td>33,73</td>
<td>№201 от 14.06.1989</td>
<td></td>
</tr>
<tr>
<td>№№ п/п</td>
<td>Наименование ООПТ</td>
<td>Площадь (га)</td>
<td>Местонахождение (административный район (ы))</td>
<td>Правоустанавливающий документ</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Пещера братьев Греве</td>
<td>1,05</td>
<td></td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>57</td>
<td>Самарское устье</td>
<td>262,01</td>
<td></td>
<td>№201 от 14.06.1989</td>
</tr>
<tr>
<td>58</td>
<td>Сокольы горы и берег Волги между Студеным и Коптевым оврагом</td>
<td>378,89</td>
<td></td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>59</td>
<td>Мастрюковские озера</td>
<td>321,29</td>
<td>ГО Самара, Ставропольский</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Акватория водохранилища ГЭС</td>
<td>73,20</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>61</td>
<td>Дендрологический парк им. 60-летия образования ВООП</td>
<td>8,00</td>
<td>ГО Сызрань</td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>63</td>
<td>Урочище Монастырская гора</td>
<td>190,90</td>
<td></td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>64</td>
<td>Ставропольский сосняк</td>
<td>861,58</td>
<td>ГО Тольятти</td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>65</td>
<td>Березовский родник</td>
<td>0,90</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>66</td>
<td>Гора Лыся</td>
<td>49,80</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>67</td>
<td>Зеленая гора</td>
<td>194,60</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>69</td>
<td>Чышмалинский родник</td>
<td>0,90</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>70</td>
<td>Древостой дуба</td>
<td>225,04</td>
<td></td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>71</td>
<td>Искалинская нагорная лесостепь</td>
<td>287,90</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>73</td>
<td>Озеро Молочка</td>
<td>32,40</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>75</td>
<td>Ольхово-березовая пойма</td>
<td>96,10</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>76</td>
<td>Пионерский лагерь санатория-профилактория</td>
<td>25,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>78</td>
<td>Гора Каратал чагыл (Кураатас-Чагы)</td>
<td>15,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>79</td>
<td>Дубрава кленово-ясменниковая</td>
<td>533,96</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>80</td>
<td>Заброшенный карьер</td>
<td>1,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>81</td>
<td>Камышлинская Мацеста</td>
<td>0,06</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>82</td>
<td>Медвежий колодец</td>
<td>0,80</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>83</td>
<td>Осиновый и осиново-липовый древостой</td>
<td>635,36</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>№№ п/п</td>
<td>Наименование ООПТ</td>
<td>Площадь (га)</td>
<td>Местонахождение (административный район)</td>
<td>Правоустанавливающий документ</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Родник Озын-Тау</td>
<td>0,60</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>84</td>
<td>Родник Шарлак</td>
<td>0,06</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>85</td>
<td>Ульяновско-Байтуганское междуречье</td>
<td>824,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Алакаевско-Чубовская каменистая степь</td>
<td>5,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>87</td>
<td>Бобровое озеро</td>
<td>2,90</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>88</td>
<td>Игонев дол</td>
<td>72,00</td>
<td></td>
<td>№6 от 19.04.1983</td>
</tr>
<tr>
<td>90</td>
<td>Каменный дол</td>
<td>42,68</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>91</td>
<td>Красноармейский сосняк</td>
<td>13377,73</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>93</td>
<td>Родник в окрестностях с. Чубовка</td>
<td>0,01</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>94</td>
<td>Самаро-Кинельская стрелка</td>
<td>125,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>95</td>
<td>Чубовская степь</td>
<td>67,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>96</td>
<td>Чубовские розы гипса</td>
<td>18,00</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>97</td>
<td>Верховья р.Козловки</td>
<td>337,12</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>99</td>
<td>Осинник в истоках р.Лозовки</td>
<td>12,28</td>
<td></td>
<td>№481 от 28.12.1989</td>
</tr>
<tr>
<td>100</td>
<td>Родник Горенка</td>
<td>0,99</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>102</td>
<td>Тимашевские лесополосы</td>
<td>9,08</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>103</td>
<td>Урочище в верховьях р.Кувайки</td>
<td>350,76</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>104</td>
<td>Михайловский серный источник</td>
<td>1,10</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>106</td>
<td>Родник Чиги-Буз</td>
<td>1,40</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>108</td>
<td>Староосеменкинский серный источник</td>
<td>6,80</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>109</td>
<td>Гипновое болото</td>
<td>1442,00</td>
<td></td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>110</td>
<td>Надеждинская лесостепь</td>
<td>188,13</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>111</td>
<td>Истоки реки Б.Вязовка</td>
<td>94,60</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>112</td>
<td>Истоки реки Чагры</td>
<td>58,60</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>113</td>
<td>Прибайкальская настоящая степь</td>
<td>188,80</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>114</td>
<td>Урочище Родники</td>
<td>110,60</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>115</td>
<td>Усадьба А.А.Бострома</td>
<td>3,70</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>116</td>
<td>Гора Красная</td>
<td>45,10</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
</tbody>
</table>
| №№
<table>
<thead>
<tr>
<th>п/п</th>
<th>Наименование ООПТ</th>
<th>Площадь (га)</th>
<th>Местонахождение (административный район (ы))</th>
<th>Правоустанавливающий документ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Дубовый древостой</td>
<td>150,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Дубовый древостой смешанный с липой и кленом</td>
<td>75,33</td>
<td></td>
<td>№768 от 16.12.2013</td>
</tr>
<tr>
<td>120</td>
<td>Озеро Белое</td>
<td>119,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Царев курган</td>
<td>13,70</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>122</td>
<td>Царевщинское озеро</td>
<td>3,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Шиланские Генковские лесополосы</td>
<td>1407,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Овраг Верховой</td>
<td>72,00</td>
<td>Красноярский, Кинельский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>125</td>
<td>Бариновский родник</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Богдановская сыртовая ковыльная степь</td>
<td>119,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Вязовская ковыльная степь</td>
<td>60,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Домашкинская лесостепь</td>
<td>312,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Насаждения дуба и клена</td>
<td>258,98</td>
<td></td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>130</td>
<td>Насаждения сосны обыкновенной</td>
<td>16,96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Озеро Бобровое</td>
<td>19,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Святой колодец</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Байракский колок</td>
<td>4,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Балка Лозовая</td>
<td>82,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Иргизская пойма</td>
<td>2776,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Марьевская балка</td>
<td>120,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Абдулзаводская дубрава</td>
<td>322,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Гора «Копейка»</td>
<td>221,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Малокинельские нагорные дубравы</td>
<td>192,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Мочалеевские нагорные дубравы</td>
<td>464,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Похвистневские пригородные дубравы</td>
<td>2965,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Ятманские широколиственные леса</td>
<td>842,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>№№ п/п</td>
<td>Наименование ООПТ</td>
<td>Площадь (га)</td>
<td>Местонахождение (административный район (ы))</td>
<td>Правоустанавливающий документ</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>--------------</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>149</td>
<td>Давыдовские сосны</td>
<td>15,81</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>150</td>
<td>Каширицкий сосновый древостой</td>
<td>42,85</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>153</td>
<td>Озеро 'Тербаза'</td>
<td>8,64</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>155</td>
<td>Голубое озеро</td>
<td>6,07</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>156</td>
<td>Гора 'Высокая'</td>
<td>168,49</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>157</td>
<td>Горы на реке Казачка</td>
<td>360,34</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>158</td>
<td>Нефтная воронка</td>
<td>53,40</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>159</td>
<td>Серебристые тополи</td>
<td>116,60</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>161</td>
<td>Серноводская пещера</td>
<td>80,86</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>163</td>
<td>Якушевские источники</td>
<td>9,73</td>
<td>Приволжский</td>
<td>№854 от 26.12.2011</td>
</tr>
<tr>
<td>164</td>
<td>Сосновый древостой</td>
<td>1905,00</td>
<td>Ставропольский</td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>175</td>
<td>Рачейский бор</td>
<td>1336,10</td>
<td>Ставропольский</td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>178</td>
<td>Владимирские сосны</td>
<td>46,50</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>179</td>
<td>Генковская лесополоса кв. 36</td>
<td>27,30</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>180</td>
<td>Генковская лесополоса кв. 44</td>
<td>13,40</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>181</td>
<td>Моревский лес</td>
<td>121,50</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>182</td>
<td>Родник Деятая пятница</td>
<td>0,50</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>183</td>
<td>Якушкинские источники</td>
<td>9,73</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>184</td>
<td>Хворостянский дендропарк</td>
<td>5,00</td>
<td>Хворостянский</td>
<td>№722 от 23.12.2009</td>
</tr>
<tr>
<td>№№ п/п</td>
<td>Наименование ООПТ</td>
<td>Площадь (га)</td>
<td>Местонахождение (административный район (ы))</td>
<td>Правоустанавливающий документ</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Барский родник</td>
<td>7,43</td>
<td>Челно-Вершинский</td>
<td>№838 от 29.12.2012</td>
</tr>
<tr>
<td>185</td>
<td>Дубрава водоохраниная</td>
<td>2046,13</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>186</td>
<td>Калиновский ельник</td>
<td>34,88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Лесной колок "Яндык"</td>
<td>16,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Урочище "Данилин пчельник"</td>
<td>246,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Древостой березы</td>
<td>89,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Ковыльная степь с дубравными колками</td>
<td>141,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Ново-Кувакский родник</td>
<td>21,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Памятная посадка сосны в честь 100-летия В.И.Ленина</td>
<td>27,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Эталонные насаждения культуры сосны обыкновенной</td>
<td>137,05</td>
<td>Шенталинский, Сергиевский</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Кондурчинская лесостепь</td>
<td>1102,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>«Караульный бугор» (гора Светелка)</td>
<td>137,59</td>
<td>Шигонский</td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>199</td>
<td>Левашовская степь</td>
<td>257,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Меловые леса южной части Сенгелеевской возвышенности</td>
<td>938,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Муранские брусличники</td>
<td>2003,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Муранские озера</td>
<td>1224,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Муранский бор</td>
<td>1922,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Орлиная пещера</td>
<td>178,61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Усольский парк</td>
<td>7,61</td>
<td></td>
<td>№657 от 22.12.2010</td>
</tr>
<tr>
<td>207</td>
<td>Чувашский бугор</td>
<td>29,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Итого:</td>
<td>90 320,99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Федеральным законом от 14.03.1995 № 33-ФЗ «Об особо охраняемых природных территориях» предусмотрено создание охранных зон особо охраняемых природных территорий (далее – ООПТ), в том числе памятников природы регионального значения.

Порядок создания охранных зон согласно указанному Закону устанавливается Правительством Российской Федерации. Постановлением Правительства Российской Федерации от 19.02.2015 № 138 утверждены Правила создания охранных зон отдельных категорий особо охраняемых природных территорий, установления их границ,
определения режима охраны и использования земельных участков и водных объектов в границах таких зон (далее – Правила). В соответствии с положением о министерстве, утверждённым постановлением Правительства Самарской области от 09.10.2013 № 528, осуществление государственного управления в области организации и функционирования ООПТ регионального значения отнесено к компетенции министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области.

Во исполнение указанных полномочий в 2015 году министерством разработаны критерии выделения охранных зон ООПТ регионального значения, типовые режимы охраны, проведено обследование десяти модельных участков.

Разработана схема охранных зон по административно-территориальным образованиям Самарской области, включающая в себя схемы границ охранных зон и описания каждой охранной зоны ООПТ регионального значения.

3.3.3. Средне-Волжский комплексный биосферный резерват

В рамках международной программы «ЧЕЛОВЕК И БИОСФЕРА» (MAB – Man and Biosphere) 27 октября 2006 года Комитетом МАВ ЮНЕСКО принято решение об организации в Самарской области «Средне-Волжского комплексного биосферного резервата» (СВКБР) – см. картосхему 3.3.3.1.

Картосхема 3.3.3.1

Общий план Средне-Волжского комплексного биосферного резервата
Основной принцип организации СВКБР заключается в объединении усилий существующих на его территории управленческих, хозяйствующих и социальных структур для эффективного выполнения всех функций биосферного резервата. Резерват призван выполнять положительную роль в социально-экономическом развитии территории за счет устойчивого лесопользования, рационального ведения сельского хозяйства, рекультивационных и прочих природо-восстановительных и природоохранных работ, а также в развитии экологического, рекреационного и познавательного туризма на примыкающей к Жигулевскому государственному природному биосферному заповеднику им. И.И. Спрягина территории национального парка «Самарская Лука» и других уникальных природных объектов.

Разнообразие экосистем СВКБР обусловило наличие здесь большого числа видов живых организмов: около двух тысяч видов сосудистых растений (около 1500 вида цветковых и 400 встречаются в культуре, 4 – голосеменных и 35 в культуре, 21 – парнотонков, 9 – хвошей), а также около 170 видов мхов, около 200 видов лишайников и около 800 видов грибов макромицетов.

Фауна позвоночных животных насчитывает более 300 видов, из них млекопитающих – 62, птиц (оседлых, гнездящихся, пролетных и регулярно посещающих территорию СВКБР) – более 200, земноводных – 8, пресмыкающихся – 9, рыб – 68. Изученная часть фауны беспозвоночных животных насчитывает около 7 тысяч видов, из них насекомых – более 5 тысяч. Среди выявленного видового разнообразия особый интерес представляют энтомоморфы (5 видов растений и 11 видов беспозвоночных), реликты (более 60 видов растений и более 80 беспозвоночных), а также виды, нуждающиеся в особой охране (из которых 21 вид растений, 2 вида млекопитающих, 19 видов птиц и 37 видов беспозвоночных включены в Красную книгу России).

Территория СВКБР представляет собой сочетание участков «древней природы» и земель, используемых в сельском, лесном хозяйстве и для добычи полезных ископаемых. В настоящее время интенсивность природопользования на территории СВКБР ограничена в результате наличия двух ООПТ: Жигулевского государственного природного биосферного заповедника им. И.И. Спрягина и национального парка «Самарская Лука». На территории заповедника и в заповедной зоне парка эксплуатация природных ресурсов исключена, а на остальной части парка, на территории Муранского и Рачейского боров ведется ограниченное лесопользование и сельское хозяйство, развивают различные формы рекреации.

3.3.4. Ботанический сад

В своей деятельности сад решает следующие основные задачи: сбор и содержание коллекций живых растений, в том числе редких и охраняемых, сохранение
биологического разнообразия; научные исследования по проблеме «Интродукция и акклиматизация растений», включая введение в культуру новых видов, форм, сортов растений в условиях Среднего Поволжья; изучение и охрана редких растений; просвещение и экологическое воспитание граждан, учебная работа (проведение учебных занятий, практик, экскурсий, выполнение учебно-исследовательских работ студентов самарских ВУЗов и пр.); научно-производственная деятельность (размножение ценных растений, реализация посадочного материала населению).

В 2015 году коллекционный фонд ботанического сада Самарского государственного университета включал более 3500 таксонов.

Дендрологическая коллекция в пространственном отношении доминирует на территории сада – собственно дендрарий расположен не менее чем на 21 га, дикорастущие древесные растения представлены также на участке местной флоры площадью около 2 га. В дендрологической коллекции представлено более 1050 таксонов деревьев, кустарников, древесных лиан.

Работы по интродукции и систематике растений субтропической и тропической флоры проводятся в фондовом оранжерее на общей площади 1200 м². Коллекция тропических и субтропических растений на 01.01.2016 г. включает 979 видов, форм и сортов, относящихся к 119 семействам и 379 родам высших растений. Среди наиболее полно представленных систематических групп: ароидные (Araceae), акантовые (Acanthaceae), бромелиевые (Bromeliaceae), геснериевые (Gesneriaceae).

Участок местной флоры площадью около 3 га расположен в северо-восточной части сада и включает равнинную территорию и овраг Сырой. Здесь в лесных и опушечных биотопах произрастает около 300 видов травянистых растений местной флоры.

Коллекция цветочно-декоративных культур в 2015 году полнилась на 7 таксонов и 1 семейство (Dipsacaceae) и насчитывает 684 таксонов, относящихся к 49 семействам. Наиболее широко представлены в коллекции семейства пиюновых (124 таксона), ирисовых (116 таксонов), лилейниковых (75 таксонов), астровых (65 таксонов).

Коллекция травянистых многолетников представлена 3 отделами, 4 классами, 56 семействами, 174 родами, 830 таксонами, в том числе 493 культиварами. Часть коллекции травянистых многолетников выращивается в весенней теплице.

Имеется альпийская горка высотой более 6 м, на которой формируется экспозиция естественной растительности Жигулевских гор.

С северной стороны территорию рассекает овраг Сырой, достигающий десятиметровой глубины, заросший в основном древесной и кустарниковой местной
растительностью. В овраге есть родник, не замерзающий зимой. Вода родника имеет высокое качество и соответствует в целом ГОСТ питьевой воды.

Ботанический сад имеет научные отделы: флоры, дендрологии, цветоводства, тропических и субтропических культур. Здесь ежегодно выращиваются для озеленения городов и населенных пунктов области и для граждан саженцы высоко декоративных и плодовых растений, рассада овощей и цветов, оранжерейные растения. Сад осуществляет проектирование и практическое озеленение муниципальных образований, предприятий и организаций. Ботанический сад также является учебной базой для учащихся биологической, географической и экологической специальностей ВУЗов области, а также курсов ландшафтного дизайна.

Работы Ботанического сада за 2015 г., направленные на изучение и сохранение биологического разнообразия, оптимизацию среды обитания и обеспечение экологической безопасности населения Самарской области:
- сравнительное изучение генофонда древесных растений различных ботанико-географических зон в природе и при интродукции: на коллекционный участок и в дендрарии высажены саженцы орехов собственной репродукции: 25 экземпляров ореха чёрного,
 З экземпляра ореха мелкоплодного; посевно 39 образцов разных видов орехов. Количество образцов различных видов, сортов, форм и гибридов представителей рода орех на коллекционном участке достигло 700 экземпляров; продолжилось изучение их зимостойкости, засухоустойчивости, особенностей биологического развития (цветения, плодоношения), морфологических особенностей плодов, их всхожести, урожайности отдельных экземпляров деревьев. Создан план коллекционного участка орехов;
- оценка влияния комплекса факторов космического полета на семена видов и сортов травянистых растений: в 2015 г. было продолжено послеполетное изучение действия комплекса факторов космического полета (невесомость, слабое ионизирующее излучение и т.п.) на жизнеспособность семян и начальные этапы последующего онтогенетического развития высших растений. Предварительные результаты проведенных исследований для экспонированных на борту КА «Бион-М» №1 в течение 30-суточного полета семян 9 видов редких растений природной флоры подтвердили стимулирующее воздействие факторов космического полета на показатели всхожести и на первые стадии вегетации.

В 2015 г. сотрудниками Ботанического сада было проведено 150 групповых экскурсий по оранжерее и дендрарию (около 10 тыс. человек с экскурсиями и индивидуально).

3.4. Красная книга Самарской области

«Красная книга Самарской области» – важнейшая основа для разработки тактики и стратегии охраны биологического разнообразия. Она является официальным изданием, содержащим свод сведений о состоянии, распространении и мерах охраны редких и уязвимых видов диких животных, дикорастущих растений и грибов.

В соответствии со статьей 9 Федерального закона Российской Федерации от 29 декабря 2006 года № 258-ФЗ «О внесении изменений в отдельные законодательные акты в связи с совершенствованием разграничения полномочий», начиная с 1 января 2008 года, полномочия Российской Федерации в области охраны и использования животного мира переданы органам государственной власти субъекта Российской Федерации. На территории Самарской области эти функции осуществляет Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области.

В 2015 году Министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области получены рекомендации для включения (и исключения) видов в Красную книгу Самарской области, а также по изменению статуса редкости видов, включённых в Красную книгу Самарской области. Предложено исключить 36 видов и включить 26 видов растений, сократив их общий список на 10 видов, а также исключить 29 видов и включить 9 видов животных, сократив их общий список на 20 видов. По отношению к числу видов, включённых в текущее издание, это составляет 5%. Таким образом, в ходе работ по ведению Красной книги Самарской области, подготовлены конкретные предложения по дальнейшему совершенствованию важного природоохранного документа.
Раздел 4. ПРИРОДОПОЛЬЗОВАНИЕ И ВЛИЯНИЕ ОСНОВНЫХ ВИДОВ ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ НА СОСТОЯНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ

4.1. Воздействие на водные объекты

Анализ состояния и использования водных ресурсов, рационализации водопользования и охраны водных объектов на территории Самарской области приводится на основании обобщенных данных государственного статистического наблюдения по форме 2-тп (водхоз) «Сведения об использовании воды» за 2015 год.

Основные показатели водопотребления и водоотведения на территории Самарской области за 2015 г. приведены в таблице 4.1.1.

Таблица 4.1.1

<table>
<thead>
<tr>
<th>№</th>
<th>Показатели</th>
<th>Единица измерения</th>
<th>2015 год</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Количество отчитавшихся респондентов</td>
<td>шт.</td>
<td>329</td>
</tr>
<tr>
<td>2</td>
<td>Забрано воды всего</td>
<td>млн. м³</td>
<td>828,57</td>
</tr>
<tr>
<td>3</td>
<td>Забрано морской воды</td>
<td>млн. м³</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>Забрано пресной поверхностной воды</td>
<td>млн. м³</td>
<td>620,32</td>
</tr>
<tr>
<td>5</td>
<td>Забрано подземной воды</td>
<td>млн. м³</td>
<td>208,24</td>
</tr>
<tr>
<td>6</td>
<td>Измерено воды, забранной из природных источников</td>
<td>млн. м³</td>
<td>686,32</td>
</tr>
<tr>
<td>7</td>
<td>Потери при транспортировке</td>
<td>млн. м³</td>
<td>67,03</td>
</tr>
<tr>
<td>8</td>
<td>Квота забора (изъятия) водных ресурсов</td>
<td>млн. м³</td>
<td>1046,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Использовано свежей воды всего</td>
<td>млн. м³</td>
<td>719,56</td>
</tr>
<tr>
<td>10</td>
<td>Использование свежей воды на питьевые и хозбытовые нужды</td>
<td>млн. м³</td>
<td>252,24</td>
</tr>
<tr>
<td>11</td>
<td>Использование свежей воды на производственные нужды</td>
<td>млн. м³</td>
<td>338,25</td>
</tr>
<tr>
<td>12</td>
<td>Использование свежей воды на орошение</td>
<td>млн. м³</td>
<td>46,51</td>
</tr>
<tr>
<td>13</td>
<td>Использование свежей воды на сельхозводоснабжение</td>
<td>млн. м³</td>
<td>0,44</td>
</tr>
<tr>
<td>14</td>
<td>Использование свежей воды на другие нужды</td>
<td>млн. м³</td>
<td>82,11</td>
</tr>
<tr>
<td>15</td>
<td>Использование питьевой воды всего</td>
<td>млн. м³</td>
<td>366,00</td>
</tr>
<tr>
<td>16</td>
<td>Использование питьевой воды на производ. нужды</td>
<td>млн. м³</td>
<td>94,78</td>
</tr>
<tr>
<td>17</td>
<td>Использование технической воды</td>
<td>млн. м³</td>
<td>327,25</td>
</tr>
<tr>
<td>18</td>
<td>Оборотное, повторное и последовательное водоснабжение</td>
<td>млн. м³</td>
<td>3 026,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Количество респондентов, имеющих сброс</td>
<td>шт.</td>
<td>100,00</td>
</tr>
<tr>
<td>20</td>
<td>Сброшено сточной, транзитной и др. вод в поверхностные объекты всего</td>
<td>млн. м³</td>
<td>551,46</td>
</tr>
<tr>
<td>21</td>
<td>Объем сточных вод, требующих очистки</td>
<td>млн. м³</td>
<td>460,76</td>
</tr>
<tr>
<td>22</td>
<td>Сброшено сточной воды без очистки</td>
<td>млн. м³</td>
<td>41,55</td>
</tr>
<tr>
<td>23</td>
<td>Сброшено сточной воды недостаточно очищенной</td>
<td>млн. м³</td>
<td>324,72</td>
</tr>
<tr>
<td>24</td>
<td>Сброшено сточной воды нормативно очищенной</td>
<td>млн. м³</td>
<td>94,49</td>
</tr>
<tr>
<td>25</td>
<td>Сброшено сточной воды нормативно чистой</td>
<td>млн. м³</td>
<td>90,70</td>
</tr>
<tr>
<td>№</td>
<td>Показатели</td>
<td>Единица измерения</td>
<td>2015 год</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Показатели</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Мощность очистных сооружений перед сбросом в водные объекты</td>
<td>млн. м³</td>
<td>829,13</td>
</tr>
<tr>
<td>27</td>
<td>Квота сброса сточных вод</td>
<td>млн. м³</td>
<td>856,90</td>
</tr>
</tbody>
</table>

4. Характеристика загрязняющих веществ

28	Азот аммонийный	т	833,71
29	Алюминий (Al³⁺)	кг	17 621,04
30	Взвешенные вещества	т	4 375,83
31	Железо (Fe²⁺, Fe³⁺) (все растворимые в воде формы)	кг	75 994,18
32	Кадмий (Cd)	кг	0
33	Кальций (Ca²⁺)	кг	225 304,0
34	Магний (Mg) (все растворимые в воде формы)	кг	60 339,08
35	Марганец (Mn²⁺)	кг	6,37
36	Медь (Cu²⁺)	кг	1 533,35
37	Мочевина (карбамид)	кг	339 910,00
38	Натрий (Na⁺)	кг	320 708,96
39	Нефть и нефтепродукты	т	75,88
40	Никель (Ni²⁺)	кг	553,80
41	Нитрат-анион (NO⁻³)	кг	23 479 793,09
42	Нитрит-анион (NO⁻²)	кг	206 346,06
43	ОП-10, СПАВ, смесь моно- и диалкилфеноловых эфиров полиэтиленгликоля	кг	31 249,35
44	Свинец (Pb) (все растворимые в воде формы)	кг	254,82
45	Сульфат-анион (сульфаты) (SO⁴⁻)	т	50 988,11
46	Сульфид-анион (сульфиды) (S⁰⁻)	кг	14,17
47	Фенол	кг	561,94
48	Фосфаты (по P)	т	1 121,83
49	Хлориды (Cl⁻)	т	31 749,73
50	Хром (Cr³⁺)	кг	0
51	Хром (Cr⁶⁺)	кг	2,0
52	Цинк (Zn²⁺)	кг	6 940,51
53	БПК полный	т	2 669,47
54	Сухой остаток	т	209 916,38
55	ХПК	кг	12 117,0
56	Сброшено загрязнителей, всего	т	326 540,19
Таблица 4.1.2

Перечень предприятий, снятых с учёта в 2015 году

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Причина</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ОАО "Волгоцеммаш"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>2</td>
<td>МУП "Ресурсоснабжение» г.о. Жигулевск</td>
<td>Передача водозаборных и очистных сооружений ООО "СамРэжЭксплуатация"</td>
</tr>
<tr>
<td>3</td>
<td>Филиал ОАО "Лinde Газ Рус" - "Лinde Газ Самара"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>4</td>
<td>ОАО "Самарское производственно-ремонтное предприятие" (Самарское ПРП)</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>5</td>
<td>ООО "Торный холод"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>6</td>
<td>Открытое акционерное общество "Самарский завод клапанов" (ОАО "Клапан")</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>7</td>
<td>Общество с ограниченной ответственностью "Буянское" (ООО "Буянское")</td>
<td>В результате реорганизации вошло в состав ООО "Суслики"</td>
</tr>
<tr>
<td>8</td>
<td>ОАО "Самарский хлебозавод №5"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>9</td>
<td>ОАО "Самарский хлебозавод №9"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>10</td>
<td>ЗАО "Самарская управляющая теплоэнергетическая компания" (ЗАО "СУТЭК" п. Прибой)</td>
<td>Водозаборные и очистные сооружения переданы АО "Водные технологии"</td>
</tr>
<tr>
<td>11</td>
<td>ЗАО "Самарская управляющая теплоэнергетическая компания" (ЗАО "СУТЭК")</td>
<td>Передача водозаборных сооружений АО "Водные технологии"</td>
</tr>
<tr>
<td>12</td>
<td>Общество с ограниченной ответственностью "ТольяттиСпиртПром"</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
<tr>
<td>13</td>
<td>ф-ла ОАО "РЖД" ЮУДТВ - СП ЦДТВ</td>
<td>Малый объём водопользования, не подлежит учету</td>
</tr>
</tbody>
</table>

4.1.1. Водопотребление

Общий объем забора (изъятия) свежей воды из природных водных объектов в 2015 г. составил 828,57 млн. м³ (что на 44, млн. м³, ниже показателя 2014 г.), в том числе из поверхностных водных объектов – 620,32 млн. м³ (- 41,35 млн. м³), из подземных – 208,24 млн. м³ (- 2,75 млн. м³).

Структура забора воды из водных объектов в 2015 г. по видам экономической деятельности (отраслям) на территории Самарской области представлена в Диаграмме 4.1.1.1.

В течение нескольких лет на территории области наблюдается снижение использования свежей воды на питьевые и хозяйственно-бытовые нужды, что связано с переходом предприятий коммунальной сферы на ресурсосберегающие технологии, а также с массовой установкой приборов учета воды в жилом секторе. Общий объем использования свежей воды в 2015 г. сократился на 28,13 млн. м³ и составил 719,56 млн.
м³, в том числе на питьевые и хозяйственно-бытовые нужды 252,24 млн. м³ (−11,00 млн. м³).

Диаграмма 4.1.1.1.

Структура забора воды из водных объектов в 2015 г. по видам экономической деятельности (отраслям) на территории Самарской области представлена, в % от общей суммы

В 2015 г. повысился показатель использования свежей воды на нужды орошения, он составил 46,51 млн. м³ (+4,31 млн. м³), это связано с увеличением потребления воды предприятиями ООО «Скорпион», ООО «Весна».

Переход предприятий на ресурсосберегающие технологии, установка приборов учета воды в жилом секторе привели к снижению потребления воды предприятиями коммунальной сферы. Использование свежей воды сократилось на 28,12 млн. м³ и составило 719,56 млн. м³.

Структура использования свежей воды из водных объектов в 2015 г. по видам экономической деятельности (отраслям) на территории Самарской области представлена в Диаграмме 4.1.1.2.
В 2015 г. уменьшились расходы воды в системах оборотного и повторно-последовательного водоснабжения (- 161,49 млн. м³) и составили 3026,74 млн. м³. Снижением этого показателя наблюдается в основном у предприятий топливно-энергетического комплекса: производственные предприятия филиала "Самарский" ПАО "Т Плюс" - "ТЭЦ ВАЗа", "Тольяттинская ТЭЦ", "Безымянская ТЭЦ", "Сызранская ТЭЦ", филиал АО "ННК" "НК ТЭЦ-2", а также АО "ННК", АО "СНПЗ", ОАО "АВТОВАЗ", ООО "Тольяттикаучук".

Структура использования свежей воды из водных объектов в 2015 г. по видам экономической деятельности (отраслям) на территории Самарской области представлена, в % от общей суммы.

4.1.2. Водоотведение

По отчетным данным 2015 года, количество респондентов, осуществляющих сброс сточных (в том числе дренажных) вод в поверхностные водные объекты увеличилось с 96 до 100 (+7), по следующим причинам:
- предприятиями ООО "Современные технологии строительства", ООО Производственная фирма "Нептун-С", ООО "ВолгаТрансФлот", ООО "ВолгоВодСтрой", ООО ПМНП "АНОД" в 2015 г. осуществляли сброс дренажных вод в Саратовское водохранилища с карт намыва песка;
- АО "Технопарк" в 2015 г. осуществляло сброс ливневых сточных вод в реку Подстепновка.

В 2015 году объем сброшенных сточных вод в поверхностные водные объекты составил 551,46 млн. м³, что на 11,48 млн. м³ меньше чем в 2014 году. Из них загрязнённых сточных вод – 366,27 млн. м³ (+19,8 млн. м³), в т.ч.:
- категории «без очистки» 41,55 млн. м³ (+ 8,10 млн. м³);
категории «недостаточно очищенные» 324,72 млн. м³ (+11,7 млн. м³);
категории «нормативно очищенные» 94,49 млн. м³ (-9,02 млн. м³);
категории «нормативно чистые (без очистки)» 90,70 млн. м³ (-22,26 млн. м³).
Структура сброса загрязненных сточных вод в поверхностные водные объекты в 2015 г. по видам экономической деятельности (отраслям) на территории Самарской области представлена в Диаграмме 4.1.2.1.

Суммарная мощность очистных сооружений перед сбросом в водные объекты составила в 2015 году составила 829,13 млн. м³ (-35,33 млн. м³).
Основной вклад в загрязнение природных водных объектов области вносят предприятия химической, нефтехимической, нефтеперерабатывающей промышленности, машиностроения, металлообработки, предприятия сельского и коммунального хозяйства.
Негативное влияние на состояние воды Куйбышевского водохранилища оказывают предприятия жилищно-коммунального хозяйства, энергетической и нефтехимической промышленности города Тольятти.
Качество воды Саратовского водохранилища формируется под влиянием транзитного переноса загрязняющих веществ из Куйбышевского водохранилища, сброса сточных вод предприятий городов Самары, Новокуйбышевска, Чапаевска, Сызрани, поверхностного стока с сельхозугодий, а также ливневых стоков с территорий вышеназванных городов.
Перечень основных предприятий, загрязняющих поверхностные водные объекты приводится в Таблице 4.1.2.1.
Таблица 4.1.2.
Основные предприятия, осуществлявшие сбросы сточных вод в поверхностные водные объекты в 2015 году

<table>
<thead>
<tr>
<th>Водный объект</th>
<th>Источники загрязнения</th>
<th>Сброс сточных вод в водные объекты выше контрольного створа</th>
<th>тыс.м³/год</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>всего</td>
<td>в т.ч. загрязненные</td>
</tr>
<tr>
<td>Куйбышевское водохр.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ООО «АВТОГРАД-ВОДОКАНАЛ»</td>
<td>9666,41</td>
<td>9666,41</td>
</tr>
<tr>
<td>г. Жигулевск</td>
<td>ООО "СамРЭК Эксплуатация"</td>
<td>79,05</td>
<td>79,05</td>
</tr>
<tr>
<td>м.р. Шигонский</td>
<td>Санаторий "Волжский Утес"</td>
<td>33,2</td>
<td>33,2</td>
</tr>
<tr>
<td>м.р. Ставропольский</td>
<td>ООО "Комфорт Дом"</td>
<td>89,1</td>
<td>89,1</td>
</tr>
<tr>
<td>Саратовское водохр.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ООО «АВТОГРАД-ВОДОКАНАЛ»</td>
<td>70355,72</td>
<td>-</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ООО «Тольяттисинтез»</td>
<td>26566,74</td>
<td>26566,74</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ОАО «ТольяттиАзот»</td>
<td>20753,57</td>
<td>-</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ЗАО «КуйбышевАзот»</td>
<td>8754,96</td>
<td>8754,96</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>ООО "Тольяттинский Трансформатор"</td>
<td>108,4</td>
<td>108,4</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>Производственное предприятие "Тольяттинская ТЭЦ" Филиал "Самарский" ПАО "Т Плюс"</td>
<td>538</td>
<td>538</td>
</tr>
<tr>
<td>г. Тольятти</td>
<td>Филиал ПАО "РусГидро" - "Жигулевская ГЭС"</td>
<td>127,44</td>
<td>127,44</td>
</tr>
<tr>
<td>г. Самара</td>
<td>ООО "СамРЭК Эксплуатация"</td>
<td>599,4</td>
<td>599,4</td>
</tr>
<tr>
<td>г. Самара</td>
<td>ООО "Самарский коммунальные системы"</td>
<td>26214,39</td>
<td>26214,39</td>
</tr>
<tr>
<td>г. Прибрежный</td>
<td>АО "Водные технологии"</td>
<td>812,17</td>
<td>812,17</td>
</tr>
<tr>
<td>г. Самара</td>
<td>ОАО "КУЗНЕЦОВ" ОП "Управленческий"</td>
<td>135,55</td>
<td>135,55</td>
</tr>
<tr>
<td>Саратовское водохр.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>г. Самара</td>
<td>Производственное предприятие "Самарская ГРЭС" филиала "Самарский" ПАО "Т Плюс"</td>
<td>15,74</td>
<td>15,74</td>
</tr>
<tr>
<td>Водный объект</td>
<td>Источники загрязнения</td>
<td>Предприятие (организация)</td>
<td>Сброс сточных вод в водные объекты выше контрольного створа тыс.м³/год</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>всего</td>
<td>в т.ч. загрязненные</td>
</tr>
<tr>
<td>Населенный пункт</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>г.Самара</td>
<td>ОАО «Куйбышевский НПЗ»</td>
<td>4906,57</td>
<td>4906,57</td>
</tr>
<tr>
<td>г.Самара</td>
<td>МП г.о. Самара «Инженерные системы»</td>
<td>2159,41</td>
<td>2159,41</td>
</tr>
<tr>
<td>г.Сызрань</td>
<td>ООО «Сызраньводоканал»</td>
<td>15745,6</td>
<td>15745,6</td>
</tr>
<tr>
<td>г.Сызрань</td>
<td>ОАО «Сызранский НПЗ»</td>
<td>6513,1</td>
<td>5588,89</td>
</tr>
<tr>
<td>г. Октябрьск</td>
<td>МУП г.о. Октябрьск Самарской области "Жилищное Управление"</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>МУП "Красноярское ЖКХ"</td>
<td>118,3</td>
<td>118,3</td>
</tr>
<tr>
<td></td>
<td>Муниципальное унитарное предприятие "Жилкомсервис"</td>
<td>63,34</td>
<td>63,34</td>
</tr>
<tr>
<td></td>
<td>МУП "Волжское ЖКХ"</td>
<td>173,85</td>
<td>173,85</td>
</tr>
<tr>
<td></td>
<td>МУП "Мирненское ЖКХ"</td>
<td>399</td>
<td>399</td>
</tr>
<tr>
<td>р. Сок</td>
<td>ООО «СовМежХоз»</td>
<td>53,22</td>
<td>-</td>
</tr>
<tr>
<td>s. Сергиевск</td>
<td>ООО "Сервисная Коммунальная Компания"</td>
<td>837,14</td>
<td>-</td>
</tr>
<tr>
<td>s. Красный Яр</td>
<td>МУП "Красноярское ЖКХ"</td>
<td>118,3</td>
<td>118,3</td>
</tr>
<tr>
<td>пгт. Новосемейкино Красноярский район</td>
<td>Муниципальное унитарное предприятие "Жилкомсервис"</td>
<td>63,34</td>
<td>63,34</td>
</tr>
<tr>
<td>пгт. Волжский</td>
<td>МУП "Волжское ЖКХ"</td>
<td>173,85</td>
<td>173,85</td>
</tr>
<tr>
<td>Красноярский район</td>
<td>МУП "Мирненское ЖКХ"</td>
<td>399</td>
<td>399</td>
</tr>
<tr>
<td>р. Кондурча</td>
<td>МП ПО ЖКХ м/р Кошкинский Самарской области</td>
<td>163,2</td>
<td>163,2</td>
</tr>
<tr>
<td>s. Кошки</td>
<td>ОАО «Масло сыровоз «Кошкинский»</td>
<td>94,1</td>
<td>-</td>
</tr>
<tr>
<td>s. Челно-Вершины</td>
<td>МУП ПО ЖКХ</td>
<td>121,2</td>
<td>121,2</td>
</tr>
<tr>
<td>Красноярский район</td>
<td>НАО "Санаторий Циолковский"</td>
<td>41,02</td>
<td>41,02</td>
</tr>
<tr>
<td>р.Самара</td>
<td>ОАО «Водоканал»</td>
<td>52,56</td>
<td>52,56</td>
</tr>
<tr>
<td>г. Нефтегорск</td>
<td>МУП «Алексеевский ККП и Б»</td>
<td>2105,42</td>
<td>2105,42</td>
</tr>
<tr>
<td>г. Кинель пгт Алексеевка</td>
<td>производственное предприятие "Безымянская ТЭЦ" филиал "Самарский" ПАО "Т Плюс"</td>
<td>60187,25</td>
<td>-</td>
</tr>
<tr>
<td>Водный объект</td>
<td>Источники загрязнения</td>
<td>Сброс сточных вод в водные объекты выше контрольного створа тыс.м³/год</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Населенный пункт</td>
<td>Предприятие (организация)</td>
<td>всего</td>
</tr>
<tr>
<td></td>
<td>г. Самара</td>
<td>МП г.о. Самара «Инженерные системы»</td>
<td>7515,89</td>
</tr>
<tr>
<td></td>
<td>г. Самара</td>
<td>ЗАО «Самарская Кабельная Компания»</td>
<td>502,03</td>
</tr>
<tr>
<td>р.Съезжая</td>
<td>г. Нефтегорск</td>
<td>ОАО «Водоканал»</td>
<td>2573</td>
</tr>
<tr>
<td></td>
<td>р.ц. Алексеевка</td>
<td>МУП "ЖКС м.р. Алексеевский Самарской области"</td>
<td>49,48</td>
</tr>
<tr>
<td>р. Б.Кинель</td>
<td>г.Отрадный</td>
<td>ООО «Коммунальная сервисная компания»</td>
<td>5419,78</td>
</tr>
<tr>
<td></td>
<td>С.Кинель-Черкассы</td>
<td>ООО «Строй Быт Сервис»</td>
<td>332,15</td>
</tr>
<tr>
<td></td>
<td>п.г.т.Алексеевка</td>
<td>МУП «Алексеевский ККП и Б»</td>
<td>545,31</td>
</tr>
<tr>
<td></td>
<td>г.Похвистнево</td>
<td>МУП ВКХ</td>
<td>1030,04</td>
</tr>
<tr>
<td>р. Чапаевка</td>
<td>г.Чапаевск</td>
<td>ОАО "Водоканал"</td>
<td>4465,56</td>
</tr>
<tr>
<td></td>
<td>г. Новокуйбышевск</td>
<td>НМУП «Водоканал»</td>
<td>68,29</td>
</tr>
<tr>
<td></td>
<td>м.р. Безенчукский</td>
<td>МУП «Водоканал»</td>
<td>71,27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>м.р. Безенчукский</td>
<td>14,72</td>
</tr>
<tr>
<td>р. Кривуша</td>
<td>г. Новокуйбышевск</td>
<td>ОАО «Новокуйбышевские Очистные Сооружения»</td>
<td>43148,43</td>
</tr>
<tr>
<td></td>
<td>г. Новокуйбышевск</td>
<td>ф-л ЗАО "ННК НК-ТЭЦ-2"</td>
<td>2782,66</td>
</tr>
<tr>
<td>р. Падовка</td>
<td>п. Стройкерамика Волжский район</td>
<td>ООО «Самарский сторонфарфор»</td>
<td>210,36</td>
</tr>
<tr>
<td></td>
<td>г. Самара</td>
<td>ООО "ИКЕА МОС" (Торговля и Недвижимость)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Красноярский район</td>
<td>ОАО Кombinat po производству изделий из ячеистого бетона "КОТТЕДЖ"</td>
<td>18,98</td>
</tr>
<tr>
<td></td>
<td>п.г.т. Смышляевка Волжский район</td>
<td>МУП "Смышляевское"</td>
<td>54</td>
</tr>
<tr>
<td>р. Безенчук</td>
<td>м.р. Безенчукский</td>
<td>МУП "Водоканалсервис"</td>
<td>1002,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>г.п. Безенчук м.р. Безенчукский</td>
<td>20,22</td>
</tr>
</tbody>
</table>
Водный объект | Источники загрязнения | Сброс сточных вод в водные объекты выше контрольного створа (тыс.м³/год)
--- | --- | ---
г. Сызрань | ОАО "Тяжмаш" | 192,46
м.р. Степновск | ФГБУЗ "МРЦ "Сергиевские минеральные воды" | 478,93
р. Малая Кубра | Производственное предприятие "Сызранская ТЭЦ" филиала "Самарский" ПАО "Т Плюс" | 1067,72
р. Крымза | г. Сызрань | 95,31

4.1.3. Основные мероприятия по рационализации водопользования и охране водных объектов

В 2015 году за счет средств предприятий, средств областного и местных бюджетов велось строительство и реконструкция очистных сооружений и канализационных сетей на общую сумму 1383,51 млн. рублей. Строительство, реконструкция и ремонт систем оборотного (повторно-последовательного) водоснабжения в 2015 году проводились за счет средств предприятий на общую сумму 311,37 млн. рублей.

В 2015 году за счет средств предприятий был выполнен ряд работ, в соответствии с планами водоохранных мероприятий, согласованными на 2015 год по лицензиям, договорам водопользования, решениям о предоставлении водного объекта в пользование, на общую сумму 4470542,57 тыс. рублей, в том числе филиалом ПАО «РусГидро» - «Жигулевская ГЭС» проведены мероприятия по реконструкции гидротурбинного оборудования с целью устранения сбросов загрязняющих веществ в Саратовское водохранилище на сумму 3 524 416,64 тыс. рублей.

4.2. Воздействие на атмосферный воздух

По данным государственного статистического наблюдения по форме 2-тп (воздух) за 2015 год на территории Самарской области стационарные источники выбросов загрязняющих веществ в атмосферу имели 952 предприятия (с учетом индивидуальных предпринимателей) с общим количеством источников 42731 единиц, из числа которых – 40624 источника с установленными нормативами ПДВ и 1201 источник с установленными нормативами ВСВ. Из 661,61 тыс. тонн загрязняющих веществ, отходящих от всех стационарных источников выделения, 408,14 тыс. тонн поступило на очистные сооружения, что составляет 61,7%. Из них уловлено 400,47 тыс. тонн или 60,5% от общего количества образовавшихся загрязняющих веществ. От уловленных было утилизировано 70,5% загрязняющих веществ.

В результате выбросы загрязняющих веществ в воздушный бассейн от стационарных источников на территории области в 2015 году составили 261,14 тыс. тонн (98% к 2014 году). Это подтверждает наблюдаемую в Самарской области тенденцию стабилизации и снижения в последние годы величины выбросов примерно на 10 процентов ниже их средней величины в 2000-е годы.

Выбросы загрязняющих веществ в атмосферный воздух от отдельных групп
источников загрязнения, имеющихся у юридических лиц в 2015 году составили: от сжигания топлива (для выработки электро- и теплоэнергии) – 39,39 тыс тонн, от технологических и других процессов – 195,81 тыс тонн.

В разрезе видов экономической деятельности максимальная доля выбросов загрязняющих веществ в атмосферный воздух приходится на сферы добычи полезных ископаемых (40,1%) и обрабатывающие производства (26,8%).

На диаграмме 4.2.1 отображена динамика выбросов загрязняющих веществ в воздушный бассейн Самарской области от стационарных источников за последние 5 лет.

В 2015 году произошло сокращение выбросов от стационарных источников практически по всем видам загрязняющих веществ, за исключением оксида углерода.

Зафиксированное сокращение выбросов произошло за счет выполнения в 2015 году юридическими лицами мероприятий по уменьшению выбросов загрязняющих веществ в атмосферу.

Общий уровень загрязнения атмосферы всё в большей степени определяется передвижными источниками выбросов в атмосферу – автомобильным транспортом, дорожно-строительной, сельскохозяйственной и мототехникой, а также железнодорожным, авиационным и речным транспортом). Основным источником выбросов является автомобильный транспорт, негативное влияние которого усугубляется тем, что отработавшие газы поступают в приземный слой воздуха, непосредственно (особенно в условиях городской застройки) воздействуя на человека. На 1 января 2016 года в области зарегистрировано 1131,2 тысяч легковых, грузовых автомобилей и автобусов (в 2014 году – более 1132,7 тысяч, в 2013 году – почти 1092,6 тысячи, в 2012 году – почти 1047 тысяч единиц). Кроме автомобилей, в регионе эксплуатировалось свыше 31,2 тысяч мотоциклов и квадроциклов (в 2014 году – 30,3 тысяч, в 2013 году – 29,6 тысяч). В 2015 году каждый третий житель области имел в собственности легковой автомобиль. Ежегодный рост парка автотransпортных средств (за последние годы – на 2 – 4,5 процента) генерирует всё возрастающую нагрузку на окружающую среду области. В первую очередь это выбросы в атмосферу отработавших газов из двигателей машин, затем – автотоходы (отработавшие шины, тормозные колодки, аккумуляторы и т.д.), а также утечки и испарения технологических жидкостей, истирание шин. Отдельную, в целом ещё не решённую, проблему представляет утилизация старых и аварийных автомобилей. Таким образом, основной объем негативного воздействия автотранспорта приходится на атмосферный воздух, в меньшей степени – на земельные ресурсы и водные объекты.
Выбросы от стационарных источников по видам загрязняющих веществ *)

<table>
<thead>
<tr>
<th>Твердые загрязняющие вещества</th>
<th>Количество загрязняющих веществ, отходящих от всех стационарных источников выделения</th>
<th>В том числе выбрасываются без очистки</th>
<th>Из них уловлено и обезврежено</th>
<th>Всего выброшено в атмосферу загрязняющих веществ</th>
<th>Всего выброшено в атмосферу загрязняющих веществ в % к предыдущему году</th>
<th>Уловлено в % к количеству загрязняющих веществ</th>
<th>Утилизировано загрязняющих веществ в % к уловленным</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Количество загрязняющих веществ, отходящих от всех стационарных источников выделения</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Всего</td>
<td>в т.ч. от организованных источников выбросов</td>
<td>Поступает на очистные сооружения</td>
<td>Всего</td>
<td>Из них утилизировано</td>
<td>За отчетный год</td>
<td>За предыдущий год</td>
</tr>
<tr>
<td>Твердые загрязняющие вещес</td>
<td>199,4</td>
<td>14,3</td>
<td>13,0</td>
<td>185,2</td>
<td>179,5</td>
<td>120,9</td>
<td>19,9</td>
</tr>
<tr>
<td>Газообразные и жидкые загрязняющие вещества, в том числе:</td>
<td>462,2</td>
<td>239,2</td>
<td>193,1</td>
<td>223,0</td>
<td>221,0</td>
<td>161,5</td>
<td>241,2</td>
</tr>
<tr>
<td>Диметил серы</td>
<td>29,3</td>
<td>28,1</td>
<td>27,5</td>
<td>1,2</td>
<td>0,7</td>
<td>0,1</td>
<td>28,5</td>
</tr>
<tr>
<td>Оксид углерода</td>
<td>88,7</td>
<td>84,1</td>
<td>78,7</td>
<td>4,6</td>
<td>4,5</td>
<td>0,1</td>
<td>84,2</td>
</tr>
<tr>
<td>Оксид азота</td>
<td>44,1</td>
<td>26,3</td>
<td>24,7</td>
<td>17,8</td>
<td>17,2</td>
<td>0,7</td>
<td>26,9</td>
</tr>
<tr>
<td>Углеводороды (без ЛОС)</td>
<td>24,1</td>
<td>23,8</td>
<td>14,3</td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>23,8</td>
</tr>
<tr>
<td>Летучие органические соединения</td>
<td>131,7</td>
<td>73,8</td>
<td>45,5</td>
<td>57,9</td>
<td>57,2</td>
<td>28,3</td>
<td>74,45</td>
</tr>
<tr>
<td>Прочие газообразные и жидкие вещества</td>
<td>144,4</td>
<td>3,1</td>
<td>2,4</td>
<td>141,3</td>
<td>141,1</td>
<td>132,1</td>
<td>3,3</td>
</tr>
</tbody>
</table>

* по данным статистической отчетности 2-тп (воздух) за 2015 год.

Факторами, влияющими на величину негативного воздействия на окружающую среду, является состав и возраст автомобильного парка. Они выступают косвенными показателями потребления топлива и запчастей, продуцирования отходов. Состав и возраст парка помогают оценить технические параметры потребности в топливе (грузовые автомобили и автобусы потребляют больше топлива, имеют больший пробег, чем легковые автомобили; возрастные автомобили имеют больший расход топлива на 100 км пробега, чем новые), в категориях возрастных автомобилей выше объем образующихся отходов – как за счет отработавших деталей и агрегатов, технологических жидкостей, так и за счет прекращения самой эксплуатации автомобилей. Экологический класс транспортных средств со сроком эксплуатации более 10 лет, как правило, соответствует Евро 0: такие автомобили имеют выбросы загрязняющих веществ в 5-10 раз больше, чем автотранспорт с экологическим классом Евро 3 и выше.
По состоянию на 1 января 2016 года количество автомототранспортных средств и прицепов к ним, стоящих на учете в Самарской области составило 1248594 единицы.

По составу транспорта:
- легковых автомобилей насчитывается 78,5% (на 01.01.2015 г. – 86,4%) от общего количества,
- грузовых автомобилей (всех категорий) – 9,5% (на 01.01.2015 г. – 10,6%) – из них грузоподъемностью до 3,5 тонн – 47,0% (на 01.01.2015 г. – 46,6%); от 3,5 до 12 тонн – 22,5% (на 01.01.2015 г. – 22,8%); свыше 12 тонн – 30,5% (на 01.01.2015 г. – 30,5%);
- автобусов (всех категорий) – 2,6% (на 01.01.2015 г. – 3,0%) – из них массой до 5 тонн – 51,4% (на 01.01.2015 г. – 51,6%), свыше 5 тонн – 48,6% (на 01.01.2014 г. – 48,4%).
- мототранспортных средств – 2,5%;
- прицепов и полуприцепов – 6,9%

По возрастному составу:
- 37,6% (на 01.01.2015 г. – 38,7%) автомобильного парка области выпущены менее 5 лет назад;
- 25,0% (на 01.01.2015 г. – 28,2%) автомобилей имеют возраст от 5 до 10 лет;
- 37,4% (на 01.01.2014 г. – 33,1%) автопарка имеет срок эксплуатации свыше 10 лет.

Таким образом, автопарк области несколько «постарел» за счёт увеличения доли автомобилей в возрасте свыше 10 лет при уменьшении доли автомобилей со сроком эксплуатации менее 10 лет. Наиболее «молодыми» в области являются парк большегрузных (грузоподъемностью свыше 12 тонн) и легковых автомобилей – 40,4% и 41,0% из них (соответственно) имеют срок эксплуатации до 5 лет; наиболее «возрастными» являются среднетоннажные (от 3,5 до 12 тонн) грузовые автомобили – здесь менее 5 лет эксплуатируются только 12,9% (на 01.01.2015 г. – 12,0%) автомобилей.

Данные об объёме выбросов в атмосферу носят оценочный характер и производятся на основе специальных методик. Оценка объема выбросов от автомобильного автотранспорта за 2015 год произведена на основе данных о количестве и видах автотранспорта, зарегистрированного на территории Самарской области (без учета транзитного автотранспорта, а также железнодорожного, воздушного и речного транспорта). Выбросы от автотранспорта за 2015 год оцениваются в 367,7 тыс. тонн, это на 1,77% выше выбросов за 2014 год. Данные о динамике валовых выбросов в атмосферу от регионального автотранспорта за последние 5 лет представлены на диаграмме 4.2.

Выбросы от железнодорожного транспорта на территории области оцениваются в 995 тонн. Таким образом, общий объем загрязнения атмосферы от автомобильного и железнодорожного транспорта в области в 2014 году составил 368,7 тыс. тонн; общий объем выбросов в атмосферу от стационарных и передвижных источников загрязнения – 629,8 тыс. тонн.

По результатам 2015 года (как и за последние годы) валовые выбросы в атмосферу области от передвижных источников превысили объем выбросов в атмосферу от стационарных источников – их доля составила 58,5% (в 2014 году – 57,6%, в 2013 году – 58,1%).

Качественная характеристика выбросов от автотранспорта в воздушный бассейн Самарской области представлена в таблице 4.2.2.

В суммарных выбросах не учтены выбросы транзитного, речного, авиационного транспорта, сельскохозяйственной и военной техники. Это связано с объективными трудностями оценки, так как в этом случае речь идет либо о трансрегиональных расчетах (aviation, водный транспорт), либо об отсутствии исходных параметров расчетов (военная и сельскохозяйственная техника).
Динамика валовых выбросов в атмосферу по Самарской области за 2010 – 2015 годы (автотранспорт)

Выбросы загрязняющих веществ от автотранспорта, зарегистрированного в Самарской области, 2015 год

Таблица 4.2.2

<table>
<thead>
<tr>
<th></th>
<th>SO₂</th>
<th>NOₓ</th>
<th>ЛОСНМ</th>
<th>CO</th>
<th>C</th>
<th>NH₃</th>
<th>CH₄</th>
<th>ВСЕГО</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выбросы от автотранспорта</td>
<td>2,9</td>
<td>48,9</td>
<td>35,7</td>
<td>276,4</td>
<td>1,4</td>
<td>0,8328</td>
<td>1,46</td>
<td>367,7</td>
</tr>
</tbody>
</table>

4.3. Отходы производства и потребления

Объем, состав и система обращения с отходами производства и потребления являются своего рода синтетическими конечными показателями, характеризующими уровень и характер развития производительных сил и социальной сферы (численность, благосостояние, поведенческие традиции населения). Показатели образования, переработки, утилизации, использования в качестве вторичных ресурсов, конечного захоронения отходов и характер взаимосвязи этих процессов отражают уровень организации, системность обращения с отходами на конкретной территории (в субъекте РФ), степень их соответствия современным требованиям. Ситуация с образованием, размещением, накоплением, использованием и обезвреживанием отходов производства и потребления на территории области характеризуется значительной изменчивостью, определяемой как изменениями экономической ситуации в стране, так и изменениями (организационными, технологическими и др.) на отходообразующих предприятиях региона, а также постепенным совершенствованием системы учета и отчетности в этой сфере. В целом, на протяжении периода с середины 1990-х годов наблюдалась тенденция постепенного роста объема образования производственных и бытовых отходов. Колебание объемов образования отходов за эти годы также, в значительной степени, обусловлено проводимой уполномоченными федеральными органами оптимизацией круга учитываемых при обработке статистической отчетности предприятий и изменениями в методике определения объема образования ТБО (переход от нормативного метода...
определения к фактически захороненному на санкционированных объектах захоронения количеству ТБО).

В целом, можно констатировать стабилизацию и снижение значений показателя объема образования отходов за 2010-2015 годы (диаграмма 4.3.1).

В общем объеме образования отходов примерно в 2015 году 89% составила доля промышленных отходов.

На территории области, по данным статистической отчетности по форме 2-ТП, – (отходы) за 2015 год (по основному кругу предприятий и организаций) образовано 3588,5 тысячи тонн отходов всех классов опасности, из них:

отходы 1 класса опасности – 0,55 тыс. тонн;
отходы 2 класса опасности – 4,02 тыс. тонн;
отходы 3 класса опасности – 478,20 тыс. тонн;
отходы 4 класса опасности – 1604,24 тыс. тонн;
отходы 5 класса опасности – 1501,47 тыс. тонн.

Согласно данным статистической отчетности, в 2015 году основными отходообразующими отраслями промышленности области являлись:

машиностроение, где при производстве автомобилей, прицепов и полуприцепов было образовано 531,33 тыс. тонн (14,8% от общего объема образования отходов), а производстве машин и оборудования – 28,34 тыс. тонн (0,8% от общего объема образования отходов);
производство нефтепродуктов – 476,29 тыс. тонн (13,3% от общего объема образования);
химическое производство – 411,27 тыс. тонн (11,5% от общего объема образования);
обработка вторичного сырья (преимущественно металлических отходов и лома) – 204,43 тыс. тонн (5,7% от общего объема образования);
добыча сырой нефти и природного газа - 161,51 тыс. тонн (4,5% от общего объема образования);
отходы строительства – 160,25 тыс. тонн (4,5% от общего объема образования);
металлургическое производство (в первую очередь, цветные металлы) – 149,46 тыс. тонн (4,2% от общего объема образования).

Большой объем отходов продуцируют такие виды экономической деятельности,
как сбор, очистка и распределение воды – 225,66 тыс. тонн (6,3% от общего объема образования); операции с недвижимым имуществом – 430,39 тыс. тонн (12% от общего объема образования), а также сфера оптовой и розничной торговли - 176,01 тыс. тонн (4,9,0%).

Найбольший объем образования отходов производства и потребления в области регистрировался:
твердых коммунальных отходов (ТКО) – в сфере жилищно-коммунального хозяйства (сбор и вывоз отходов у населения).

Из общего объема образовавшихся и ранее накопленных отходов в период 2015 года:
1287,67 тыс. тонн использовано (переработано) самими предприятиями и организациями области;
797,60 тыс. тонн обезврежено на предприятиях и организациях;
2801,74 тыс. тонн передано для использования и обезвреживания другим предприятиям;
1687,40 тыс. тонн захоронено на собственных объектах предприятий.

В целях обеспечения более рационального использования исходных сырья и материалов, увеличения объема и повышения качества выпускаемой продукции, снижения негативного воздействия на окружающую среду в промышленном комплексе области продолжались работы по реконструкции или модернизации основных технологических процессов, проведению работ по сертификации производств по системе экологического менеджмента стандарта ISO 14001, что способствовало общей экологизации производства, в том числе использованию отходов производства.

В 2015 году 58,1 процента от объема образования отходов за год использовалось и обезвреживалось на самих предприятиях (организациях), где они образовывались: в том числе по отходам 1 класса опасности – 37,8% (в 2014 году – 61,7%), по отходам 2 класса опасности – 0,35% (в 2014 году – 89,9%), по отходам 3 класса опасности – 82,5% (в 2014 году – 93,2%), по отходам 4 класса опасности – 40,5% (в 2014 году – 27,2%), по отходам 5 класса опасности – 69,4% (в 2014 году – 59,5%).

Доля непосредственного использования (в качестве вторичных материалов и сырья) отходов за последние годы составила около 1/3 от всего объема образования отходов производства и потребления, в 2015 году доля использования отходов составила 35,9%. В основном используются производственные отходы – за последние годы доля их использования, по оценке, была в районе 40% (в 2015 году – 40,3%). Динамика использования отходов в области показана на диаграмме 4.3.2.

Основными использованными в 2015 году на предприятиях и организациях области видами отходов являлись: лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные - 332,09 тыс. тонн (100% от объема образования); грунт, образовавшийся при проведении землеройных работ, не загрязненный опасными веществами 199,44 тыс. тонн (93,8% от объема образования); лом и отходы алюминия несортированные – 81,95 тыс. тонн (92,5% от объема образования лом дорожного полотна автомобильных дорог – 63,25 тыс. тонн (99,7% от объема образования); Отходы производства олеума, кислоты серной – 43,46 тыс. тонн (97,5% от объема образования)
Ряд предприятий области достиг значительных успехов в организации переработки (использования) и утилизации производственных отходов. Так, на ООО «Регион-нефть» и ООО «Сам Лит» использовано и переработано 99% всех образовавшихся на предприятии отходов, ПАО 'Комбинат по производству изделий из ячеистого бетона "КОТТЕДЖ" – 98%, АО "Ракетно-космический Центр "Прогресс" – 96%, ООО "Тимашевская птицефабрика" – 94%, АО "Отраденский газоперерабатывающий завод" – 93%, ООО "Легкий керамзит" – 90%, ЗАО "Алкоа СМЗ" – 89%.

По сведения, поданным природопользователями в «Региональный кадастр отходов Самарской области», в 2015 году на территории региона переработкой различных видов отходов занимались следующие организации:

- утилизацией полимеров, бумаги, картона: ООО «Производство по переработке промышленных отходов», ООО «Поволжские вторичные ресурсы»;
- утилизацией нефтесодержащих продуктов: АО «Самаранефтегаз»,
ООО Поволжские вторичные ресурсы;
- обезвреживанием ртутьсодержащих отходов – ГУП Самарской области «Экология».

Наиболее объемы захоронения приходятся на следующие виды отходов: твердые коммунальные отходы; осадки от подготовки воды и очистки сточных вод; мусор строительный; минеральные волокна, шламы и шлаки; прочие твердые минеральные отходы; шламы нефти и нефтепродуктов, отходы при добыче нефти и газа; отходы солей; пластмассы и полимеры; растворители и лакокрасочные вещества.

По данным статистической отчетности за 2015 год, на 1 января 2015 года наличие отходов составило 6375,57 тыс. тонн, на конец 2015 года – 6432,04 тыс. тонн отходов различных классов опасности, то есть за год общий объем накопленных отходов увеличился на 0,9 процента. Наиболее значительной антропогенной нагрузке в части размещения отходов подвергается территория городских округов Новокуйбышевск, Сызрань, Тольятти, муниципальных районов Волжский, Красноярский, Кинельский.

4.4. Загрязнение почв

4.4.1. Критерии степени загрязнения почв

Одним из важнейших критериев оценки степени загрязнения почвы химическим веществом является предельно допустимая концентрация (ПДК) этого вещества. Кроме того действуют ориентировочно допустимые концентрации (ОДК) тяжелых металлов в почвах. Значение ПДК и ОДК приведены в нормативных документах ГН 1.2.1323-03; ГН 1.1.7.2041-06; ГН 2.1.7.2211-09; ГН 1.2.2701-10. К категории «загрязненных» согласно ГОСТ 17.4.3.04 – 85 следует относить почвы, в которых количество загрязняющих веществ находится на уровне или выше ПДК.

Классы опасности токсичных веществ промышленного происхождения (ТПП) и значения их ПДК (ОДК) в соответствии с нормативными документами приведены в таблице 4.4.1.1.

Таблица 4.4.1.1

<table>
<thead>
<tr>
<th>Наименование вещества</th>
<th>Класс опасности</th>
<th>ПДК, мг/кг</th>
<th>ОДК, мг/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4 - D</td>
<td>2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Трефлан</td>
<td>2</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Метафос</td>
<td>1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Далапон</td>
<td>2</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Симазин</td>
<td>2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Атразин</td>
<td>1</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Прометрин</td>
<td>3</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>ТХАН</td>
<td>3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Суммарный ДДТ</td>
<td>1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Суммарный ГХЦГ</td>
<td>1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Фтор</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Сульфаты</td>
<td>3</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Нитраты</td>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Никель</td>
<td>2</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Медь</td>
<td>2</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>Свинец</td>
<td>1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>3</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Наименование вещества</td>
<td>Класс опасности</td>
<td>ПДК, мг/кг</td>
<td>ОДК, мг/кг</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Цинк</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Кадмий</td>
<td>1</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Ртуть</td>
<td>1</td>
<td>2,1</td>
<td></td>
</tr>
<tr>
<td>Мышьяк</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Алюминий</td>
<td>Не разработан</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нефтепродукты</td>
<td>Не разработан</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При определении загрязнения почвы веществами, для которых отсутствуют ПДК или ОДК, сравнение уровней загрязнения проводится с естественными фоновыми уровнями. За фоновые содержания химических элементов и соединений в почве следует принимать их концентрации в почвах ландшафтов, не подвергающихся техногенному воздействию, удаленных не менее чем на 20-50 км от источника выбросов, в зависимости от мощности источника. При этом почвы фоновых участков должны быть аналогами загрязненных. Таким образом, фоновые концентрации отдельно рассчитываются для каждого региона.

Также в качестве комплексного показателя загрязнения почвы металлами служит суммарный индекс загрязнения $Z_{ф}$. Для его расчета используются значения средних концентраций металлов в почве исследуемого объекта, а также значения фоновых концентраций для данного региона. Ориентировочная шкала опасности загрязнения почв по суммарному индексу загрязнения представлена в таблице 4.4.1.2.

<table>
<thead>
<tr>
<th>Ориентировочная шкала опасности загрязнения почв по $Z_{ф}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Категория загрязнения</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Допустимая</td>
</tr>
<tr>
<td>Умеренно опасная</td>
</tr>
<tr>
<td>Опасная</td>
</tr>
<tr>
<td>Чрезвычайно опасная</td>
</tr>
</tbody>
</table>

Перечень контролируемых пестицидов определяется как наличием аттестованных методик анализа, так и эколого-токсикологической оценкой пестицидов, проводимой с учетом токсичности и фитотоксичности пестицидов, объемов и масштабов их применения, токсичности для рыб и пчел, кумулятивного фактора и персистентности в почве. Во исполнение международных обязательств России в рамках Стокгольмской конвенции о стойких органических загрязнителях (СОЗ) на территории области продолжается проведение регулярного мониторинга содержания остаточных количеств запрещенного пестицида – ДДТ – в почве.

4.4.2. Загрязнение почв в процессе осуществления сельскохозяйственной деятельности

Загрязнение почв пестицидами, меры по сохранению плодородия земель.

Одним из основных источников загрязнения почв является сельскохозяйственная деятельность, в процессе которой широко применяются различные виды химических и органических веществ. Необоснованное использование в земледелии особо стойких препаратов приводит к накоплению их в почве. При этом важной экологической характеристикой пестицидов является их способность мигрировать по профилю почв, а также в растения, воду и воздух, загрязняя природную среду. Токсическое действие на
почву и растения могут оказывать не только сами препараты, но и продукты их трансформации, обладающие более высокой устойчивостью и токсичностью. Пестициды могут поступать в растения не только через корневую систему из почвы, но и через надземные части растений при обработке их препаратами, проникая вглубь растительных тканей и сохраняясь там от недели до нескольких месяцев. Нередко под влиянием пестицидов меняется состав витаминов, углеводов, минеральных веществ в плодах, ягодах, овощах, зерне.

На посевах сельскохозяйственных культур в Самарской области ежегодно имеют распространение специализированные вредители, болезни и сорная растительность, требующие специальных средств и методов борьбы с ними.

В течение 2015 года специалистами ФГБУ «Приволжское УГМС» на территории Самарской области на содержание пестицидов обследованы почвы ряда хозяйств (всего обследовано 1772 га сельхоузгодий, 28 полей), а именно:

ООО «Мир» (бывший совхоз «Искра») Безенчукского района,
ОАО «Садовод» с. Лесная Поляна Сызранского района,
ЗАО «Луначарск» Ставропольского района,
СХПК «Хрещевский» (ООО «Лик») Ставропольского района,
ООО «Скорпион» Безенчукского района.
Кроме того на содержание пестицидов обследованы:
1. почвы фоновых участков (Национального природного парка «Самарская Лука» и наблюдательного участка АГМС АГЛОС, 10 га и 30 га соответственно);
2. почвы разреза, заложенного на глубину 2 метра в ОАО «Садовод» с. Лесная Поляна Сызранского района с целью изучения вертикальной миграции пестицидов по почвенному профилю после применения их на сельхоузгодьях;
3. почвы, отобранные в местах хранения и захоронения пестицидов, непригодных для применения (в районе склада пестицидов ЗАО «Луначарск» Ставропольского района).

Проводились наблюдения за содержанием в почве пестицидов 14-ти наименований:
4. инсектоакарициды:
5. дихлордифенилтрихлорэтан (ДДТ),
6. его метаболит дихлордифенилдихлорэтилен (ДДЭ),
7. альфа-, бета-, гамма-гексахлорциклогексан (ГХЦГ),
8. гексахлорбензол (ГХБ);
9. гербициды:
10. атразин,
11. 2,4-дихлорфеноксиуксусная кислота (2,4-Д),
12. далапон,
13. прометрин,
14. симазин,
15. трефлан,
16. трихлорщепат натрия (ТХАН);
17. фосфороорганические пестициды: метафос.

В таблице 4.4.2.1 представлены результаты обследования почв хозяйств области.
На основании полученных данных, в 2015 г. обнаружены площади сельхоузгодий области, загрязненные ОК суммарного ДДТ (весной и осенью), и ОК суммарного ГХЦГ (осенью).

Весной также выявлены площади, загрязненные ОК ГХБ, далапона, трефлана, ТХАН, осенью – ОК ГХБ, трефлана, ТХАН.

В почве хозяйств области среднее и максимальное содержание ОК 2,4-Д, метафоса, прометрина и симазина+атразина соответствует гигиеническим нормативам.
Таблица 4.4.2.1
Среднее и максимальное содержание ОК пестицидов в исследуемых пробых почвы хозяйств области в 2014 году

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Среднее содержание, ПДК (ОДК*)</th>
<th>Максим. содержание, ПДК (ОДК*)</th>
<th>Где обнаружено максимальное содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>весной</td>
<td>осенью</td>
<td>весной</td>
</tr>
<tr>
<td>Суммарный ДДТ</td>
<td>0,3</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>Суммарный ГХЦГ</td>
<td>0,1</td>
<td>0,6</td>
<td>0,9</td>
</tr>
<tr>
<td>ГХБ*</td>
<td>0,8</td>
<td>1,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Далапон</td>
<td>0,07</td>
<td>0,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Трефлан*</td>
<td>0,7</td>
<td>0,4</td>
<td>1,2</td>
</tr>
<tr>
<td>ТХАЕН*</td>
<td>0,4</td>
<td>0,1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Изучение вертикальной миграции пестицидов глубь по почвенному профилю после применения их на сельскохозяйственных угодьях позволяет выявить закономерности их распределения в почве. В 2015 г. для изучения вертикальной миграции пестицидов был заложен разрез в почве ОАО «Садовод» с. Лесная Поляна Сызранского района. По почвенному профилю отобрано 20 проб почвы на глубину 200 см на участке под яблонями площадью 40 га. В пробах почвы определяли содержание ОК хлорорганических пестицидов (ХОП), 2,4-Д, далапона, трефлана, метафоса, ТХАЕН, симазина+атразина, прометрина. В пробах почвы обнаружены ОК ХОП, трефлана, 2,4-Д, далапона, ТХАЕН. Максимальное содержание ОК суммарного ДДТ выялено на уровне 3,8 ПДК (на глубине 0,2 м), ОК суммарного ГХЦГ – 1,2 ПДК (1,8 м), ОК ГХБ – 2,9 ОДК (0,8 м), ОК трефлана – 1,3 ОДК (2,0 м), ОК ТХАЕН – 1,4 ОДК (1,2 м), ОК 2,4-Д – 2,4 ПДК (0,6 м), ОК далапона – 2,5 ПДК (1,4 м). ОК метафоса и симазина+атразина наблюдались на уровне сотых долей ПДК. ОК прометрина выявлены в незначительном количестве, в большинстве проб он не был обнаружен.

Для определения содержания ОК пестицидов в объектах природной среды были продолжены наблюдения за почвами Национального природного парка (НПП) «Самарская Лука», удаленного от районов сельскохозяйственного производства (обследовано 10 га), и АГМС АГЛОС (обследовано 30 га), расположенных на расстоянии 30 км и 20 км от г.о.Самара. Отобранные пробы почвы анализировались на содержание ОК ХОП, 2,4-Д, далапона, трефлана, ТХАЕН, симазина+атразина, прометрина, метафоса (таблица 4.4.2.2).

Содержание ОК суммарного ГХЦГ, метафоса, трефлана, суммы симазин+атразина наблюдалось на уровне десятых долей ПДК (ОДК), ОК прометрина выявлены в незначительных количествах, ОК 2,4-Д в почве фоновых участков не обнаружены.

Для определения загрязнения почв в местах хранения и захоронения пестицидов, запрещенных и непригодных для применения, были отобраны пробы почвы вокруг склада пестицидов ЗАО «Луначарск» Ставропольского района, которые отбирались весной методом «конверта» на расстоянии 0,50, 200, 300 и 500 м от склада по четырем румбам С, Ю, В, З. В них определялись следующие пестициды: n,н'-ДДТ; n,н'-ДДЭ; алльфа-, бета-, гамма-ГХЦГ; ГХБ, метафос, трефлан, ТХАЕН; 2,4-Д; далапон, симазин + атразин, прометрин.
Таблица 4.4.2.2
Среднее и максимальное содержание ОК пестицидов в исследуемых пробах почвы фоновых участков, 2015 год

<table>
<thead>
<tr>
<th>Вещество</th>
<th>НП «Самарская Лука»</th>
<th>АГМС АГЛОС</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Среднее в ед. ПДК (ОДК*)</td>
<td>Максим. в ед. ПДК (ОДК*)</td>
</tr>
<tr>
<td>Суммарный ДДТ</td>
<td>0,6</td>
<td>1,0</td>
</tr>
<tr>
<td>ГХБ*</td>
<td>0,8</td>
<td>1,3</td>
</tr>
<tr>
<td>Далапон</td>
<td>1,5</td>
<td>4,5</td>
</tr>
<tr>
<td>ТХАН*</td>
<td>0,7</td>
<td>1,6</td>
</tr>
</tbody>
</table>

В процессе обследования были выявлены ОК суммарного ДДТ, ГХБ, ТХАН, чье содержание отражено в таблице 4.4.2.3.

Таблица 4.4.2.3
Содержание ОК пестицидов на территории вокруг склада пестицидов ЗАО «Луначарск» Ставропольского района, 2015 г.

<table>
<thead>
<tr>
<th>Наименование пестицида</th>
<th>Среднее содержание в единицах ПДК (ОДК)</th>
<th>Максимальное содержание в единицах ПДК (ОДК)</th>
<th>Где обнаружено максимальное содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Суммарный ДДТ</td>
<td>1,1</td>
<td>2,3</td>
<td>с южной стороны склада</td>
</tr>
<tr>
<td>ГХБ*</td>
<td>0,7</td>
<td>1,9</td>
<td>200 м к востоку от склада</td>
</tr>
<tr>
<td>ТХАН*</td>
<td>1,9</td>
<td>3,3</td>
<td>500 м к югу от склада</td>
</tr>
</tbody>
</table>

Остаточные количества других пестицидов обнаружены не были.
В 2015 г. продолжены комплексные наблюдения за загрязнением объектов природной среды (почвы, воды и донных отложений) на участке многолетних наблюдений (УМН) – водосборе р.Чапаевка в районе ООО «Мир» (свх. «Искра») Безенчукского района.
Весной и осенью были обследованы почвы УМН на площади 400 га. Результаты обследования представлены в таблице 4.4.2.4.

Таблица 4.4.2.4
Среднее и максимальное содержание ОК пестицидов в исследуемых пробах почвы на участке многолетних наблюдений в районе ООО «Мир» (свх. «Искра») Безенчукского района, 2015 г.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Среднее содержание, ПДК (ОДК*)</th>
<th>Максим. содержание, ПДК (ОДК*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>весной</td>
<td>осенью</td>
</tr>
<tr>
<td>Суммарный ДДТ</td>
<td>0,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Суммарный ГХЦГ</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>ГХБ*</td>
<td>0,4</td>
<td>1,7</td>
</tr>
<tr>
<td>Далапон</td>
<td>0,3</td>
<td>0,2</td>
</tr>
</tbody>
</table>
Загрязненные ОК суммарного ДДТ и далапона почвы обнаружены весной, ОК суммарного ДДТ, суммарного ГХЦГ, ГХБ – осенью.
Содержание ОК метафоса, симазина+атразина, 2,4-Д, ТХАН, трефлана, прометрина весной и осенью не превысило нормативов.
Меры по сохранению и восстановлению плодородия почв сельскохозяйственного назначения и агроландшафтов.
В сельском хозяйстве области продолжается реализация системных мер по сохранению и восстановлению плодородия почв сельскохозяйственного назначения и агроландшафтов.
Известно, что плодородие почв во многом зависит от концентрации в них органического вещества – гумуса. В Самарской области обеспеченность пахотных почв гумусом по состоянию на 01.01.2016 составляет 4,22%. По муниципальным районам данные приведены в таблице 4.4.2.5.

Таблица 4.4.2.5.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Район</th>
<th>Содержание гумуса, %</th>
<th>№ п/п</th>
<th>Район</th>
<th>Содержание гумуса, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Алексеевский</td>
<td>3,91</td>
<td>15</td>
<td>Красноармейский</td>
<td>5,03</td>
</tr>
<tr>
<td>2</td>
<td>Безенчукский</td>
<td>3,83</td>
<td>16</td>
<td>Красногвардейск</td>
<td>5,03</td>
</tr>
<tr>
<td>3</td>
<td>Богатовский</td>
<td>3,8</td>
<td>17</td>
<td>Нефтегорский</td>
<td>3,9</td>
</tr>
<tr>
<td>4</td>
<td>Большеглушицк</td>
<td>3,78</td>
<td>18</td>
<td>Пестравский</td>
<td>3,15</td>
</tr>
<tr>
<td>5</td>
<td>Большечерниговский</td>
<td>3,23</td>
<td>19</td>
<td>Похвистневский</td>
<td>5,07</td>
</tr>
<tr>
<td>6</td>
<td>Борский</td>
<td>4,5</td>
<td>20</td>
<td>Приволжский</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>Волжский</td>
<td>4,38</td>
<td>21</td>
<td>Сергиевский</td>
<td>5,63</td>
</tr>
<tr>
<td>8</td>
<td>Елховский</td>
<td>4,9</td>
<td>22</td>
<td>Ставропольский</td>
<td>4,03</td>
</tr>
<tr>
<td>9</td>
<td>Исаклинский</td>
<td>5,3</td>
<td>23</td>
<td>Сызранский</td>
<td>4,01</td>
</tr>
<tr>
<td>10</td>
<td>Камышлинский</td>
<td>6,2</td>
<td>24</td>
<td>Хворостянский</td>
<td>2,9</td>
</tr>
<tr>
<td>11</td>
<td>Кинельский</td>
<td>4,16</td>
<td>25</td>
<td>Челно-Алаксин</td>
<td>6,45</td>
</tr>
<tr>
<td>12</td>
<td>Кинель-Черкасский</td>
<td>5,3</td>
<td>26</td>
<td>Шенталинский</td>
<td>5,6</td>
</tr>
<tr>
<td>13</td>
<td>Клявлинский</td>
<td>5,12</td>
<td>27</td>
<td>Шигонский</td>
<td>4,02</td>
</tr>
<tr>
<td>14</td>
<td>Кошкинский</td>
<td>5,82</td>
<td></td>
<td>По области</td>
<td>4,22</td>
</tr>
</tbody>
</table>

Особое внимание уделяется расширению озимого клина в структуре зерновых культур, так как озимые в любых погодных условиях являются гарантом стабильных урожаев. При этом почти на половине площадей озимых культур вносятся минеральные удобрения.
Площадь многолетних трав в Самарской области составляет более 120 тыс. гектаров. В целях обновления старовозрастных посевов в 2015 году посевно 5 тыс. гектаров беспокровных и покровных многолетних трав. За счет мощной корневой системы многолетние травы накапливают в почве питательные вещества, улучшают ее структуру, способствуют предотвращению водной и ветровой эрозии.
В области активизировалось применение минеральных удобрений. В 2015 году внесено 25 кг минеральных удобрений в действующем веществе на 1 га посевной площади сельскохозяйственной культуры. Дополнительно в целях достижения намеченных объемов производства зерна в большинстве муниципалитетов стимулирующие субсидии были направлены сельхозтоваропроизводителям на приобретение минеральных удобрений.
Сохранение и увеличение содержания органического вещества в почвах также возможно за счет внесения органических удобрений, оставления более высокой стерни зерновых, запашки части побочной продукции культур, освоения новых агротехнических приемов. В связи с ростом поголовья крупного рогатого скота увеличилась возможность внесения органических удобрений. В 2015 году на поля вывезено 0,85 млн. тонн
органических удобрений. После уборки зерновых культур измельченная солома на половине площадей была заделана в почву.

На посевах сельскохозяйственных культур ежегодно имеют распространение специализированные вредители, болезни и сорная растительность.

Таблица 4.4.2.6.

| Обработанная средствами защиты растений площадь (в перерасчете на однократное исчисление) |
|---|------------------|------------------|------------------|
| | 2013 год | 2014 год | 2015 год |
| Всего, тыс. га | 1336,7 | 1391,5 | 1494,1 |
| в т.ч. от вредителей | 338,2 | 373,2 | 373,6 |
| от болезней | 165,1 | 148,1 | 187,1 |
| от сорняков | 766,4 | 822,9 | 877,1 |
| десикация | 62,0 | 47,3 | 56,3 |

Объемы проведенных обработок на посевах сельскохозяйственных культур с помощью пестицидов возрастают, а количество израсходованных препаратов снижается. Это связано с тем, что используются новые современные высококачественные инсектициды (от вредителей), гербициды (от сорняков), протравители (от болезней) с очень низкой нормой расхода на 1 га – 0,005-0,05 литров/га; 0,2 литров/тонну посевного материала. Соответственно снижается пестицидная нагрузка на обработанную площадь.

Таблица 4.4.2.7.

| Пестицидная нагрузка на обработанную площадь |
|---|------------------|------------------|------------------|
| | 2013 год | 2014 год | 2015 год |
| Всего (л, кг на 1 га) | 1,56 | 0,95 | 0,92 |

Работа министерства сельского хозяйства Самарской области, органов управления сельским хозяйством муниципальных районов и сельхозтоваропроизводителей направлена на совершенствование структуры посевов, применение современных систем обработки почвы, защиты растений, рациональное использование удобрений, восстановление почвенного плодородия и другие организационно-хозяйственные мероприятия, обеспечивающие устойчивое производство растениеводческой продукции.

4.4.3. Загрязнение почв токсикантами промышленного происхождения

4.4.3.1. Загрязнение почв тяжелыми металлами

В 2015 г. наблюдения за загрязнением почв тяжелыми металлами (кадмием, марганцем, медью, свинцом, цинком, никелем и алюминием) проводились:
• на участках многолетних наблюдений (УМН) ЗАО «Алкоа СМЗ» (парке пансионата «Дубки» и в парке «60 лет Октября»);
• на территории фоновых участков (в НПП «Самарская Лука» и АГМС АГЛОС).

В таблице 4.4.3.1.1 показаны средние и максимальные концентрации металлов в парке пансионата «Дубки» и парке «60 лет Октября» в г.о.Самара. Как видно из таблицы, среднее содержание тяжелых металлов в почвах обеих площадок не превысило уровень ПДК (ОДК) и составило 0,2-0,7 ПДК (ОДК).

Максимальное значение для всех металлов не превысило норму и соответствовало уровням 0,1 - 0,8 ПДК (ОДК) для парка пансионата «Дубки» и парка «60 лет Октября», что несколько ниже предыдущего года наблюдений.
Средние и максимальные концентрации металлов в почве на участках многолетних наблюдений г.о. Самара в районе ОАО «Алкоа СМЗ», 2015 г.

<table>
<thead>
<tr>
<th>Металл</th>
<th>Среднее содержание В ед. ПДК (ОДК)</th>
<th>В ед. Фона</th>
<th>Максимальное содержание В ед. ПДК (ОДК)</th>
<th>В ед. Фона</th>
</tr>
</thead>
<tbody>
<tr>
<td>Парк пансионата «Дубки» (5,0 км от ОАО Алкоа), рН ≥ 5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>0,2 (0,1)</td>
<td>0,8</td>
<td>0,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Свинец</td>
<td>0,4 (0,1)</td>
<td>0,7</td>
<td>0,5 (0,1)</td>
<td>0,8</td>
</tr>
<tr>
<td>Кадмий</td>
<td>0,2</td>
<td>0,4</td>
<td>0,2</td>
<td>0,6</td>
</tr>
<tr>
<td>Медь</td>
<td>0,2</td>
<td>1,1</td>
<td>0,2</td>
<td>1,3</td>
</tr>
<tr>
<td>Никель</td>
<td>0,7</td>
<td>1,8</td>
<td>0,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Цинк</td>
<td>0,4</td>
<td>1,3</td>
<td>0,6</td>
<td>1,8</td>
</tr>
<tr>
<td>Алюминий</td>
<td>-</td>
<td>6,5</td>
<td></td>
<td>7,6</td>
</tr>
<tr>
<td>Парк «60 лет Октября» (0,5 км от ОАО Алкоа), рН ≥ 5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>0,1 (0,1)</td>
<td>0,6</td>
<td>0,2</td>
<td>1,0</td>
</tr>
<tr>
<td>Свинец</td>
<td>0,3</td>
<td>0,6</td>
<td>0,5 (0,1)</td>
<td>0,9</td>
</tr>
<tr>
<td>Кадмий</td>
<td>0,2</td>
<td>0,4</td>
<td>0,2</td>
<td>0,6</td>
</tr>
<tr>
<td>Медь</td>
<td>0,1</td>
<td>1,0</td>
<td>0,2</td>
<td>1,3</td>
</tr>
<tr>
<td>Никель</td>
<td>0,4</td>
<td>1,1</td>
<td>0,8</td>
<td>1,9</td>
</tr>
<tr>
<td>Цинк</td>
<td>0,3</td>
<td>1,0</td>
<td>0,4</td>
<td>1,3</td>
</tr>
<tr>
<td>Алюминий</td>
<td>-</td>
<td>5,9</td>
<td></td>
<td>7,4</td>
</tr>
</tbody>
</table>

Однако полученные результаты были выше фоновых концентраций исследуемых металлов. На обеих площадках средние концентрации металлов в 1,1-6,5 раза превышали уровень Фона, кроме марганца, свинца и кадмия. Среднее содержание меди и цинка в пробах, отобранных в парке «60 лет Октября», составило 1,0 Ф.

Максимальные концентрации всех металлов, кроме свинца и кадмия, на обеих площадках были выше фоновых значений и варьировали в почве парка пансионата «Дубки» в пределах 1,3-7,6 Ф, в парке «60 лет Октября» – 1,3-7,4 Ф. Максимальное содержание марганца в пробах, отобранных в обоих парках, составило 1,0 Ф.

Продолжено определение концентраций тяжелых металлов в почвах Национального природного парка «Самарская Лука» и АГМС АГЛОС. (см. таблицу 4.4.3.1.2).

Средние и максимальные концентрации металлов в почве на участках определения фонового загрязнения, 2015 г.

<table>
<thead>
<tr>
<th>Металл</th>
<th>Среднее содержание В ед. ПДК (ОДК)</th>
<th>В ед. Фона</th>
<th>Максимальное содержание В ед. ПДК (ОДК)</th>
<th>В ед. Фона</th>
</tr>
</thead>
<tbody>
<tr>
<td>Национальный парк «Самарская Лука» рН ≥ 5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>0,3 (0,1)</td>
<td>1,2</td>
<td>0,3</td>
<td>1,5</td>
</tr>
<tr>
<td>Свинец</td>
<td>0,3</td>
<td>0,5</td>
<td>0,4 (0,1)</td>
<td>0,6</td>
</tr>
<tr>
<td>Кадмий</td>
<td>0,2</td>
<td>0,4</td>
<td>0,2</td>
<td>0,6</td>
</tr>
<tr>
<td>Медь</td>
<td>0,1</td>
<td>0,9</td>
<td>0,2</td>
<td>1,3</td>
</tr>
<tr>
<td>Никель</td>
<td>0,2</td>
<td>0,5</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>Цинк</td>
<td>0,2</td>
<td>0,6</td>
<td>0,2</td>
<td>0,7</td>
</tr>
<tr>
<td>Алюминий</td>
<td>-</td>
<td>1,6</td>
<td></td>
<td>1,9</td>
</tr>
<tr>
<td>АГМ САГЛ ОС</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Марганец</td>
<td>0,3 (0,1)</td>
<td>1,2</td>
<td>0,3</td>
<td>1,6</td>
</tr>
<tr>
<td>Свинец</td>
<td>0,3</td>
<td>0,5</td>
<td>0,7 (0,2)</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Таблица 4.4.3.2.1
Среднее и максимальное содержание нефтепродуктов на участках наблюдения, 2015 г.

<table>
<thead>
<tr>
<th>Участок наблюдения</th>
<th>Среднее содержание, в ед. Фона</th>
<th>Максим. содержание, в ед. Фона</th>
</tr>
</thead>
<tbody>
<tr>
<td>Парк пансионата «Дубки»</td>
<td>4,8 Ф</td>
<td>6,5 Ф</td>
</tr>
<tr>
<td>Парк «60 лет Октября»</td>
<td>2,4 Ф</td>
<td>3,2 Ф</td>
</tr>
<tr>
<td>НПП «Самарская Лука»</td>
<td>1,1 Ф</td>
<td>1,2 Ф</td>
</tr>
<tr>
<td>АГМС АГЛОС</td>
<td>0,9 Ф</td>
<td>1,1 Ф</td>
</tr>
<tr>
<td>Район буферной базы п. Гранный Волжского района</td>
<td>3,2 Ф</td>
<td>12,0 Ф</td>
</tr>
</tbody>
</table>

Превышение фонового уровня по содержанию нефтепродуктов на участках многолетних наблюдений г.о. Самара наблюдалось в почве парка пансионата «Дубки» и парка «60 лет Октября». Почвы обоих участков многолетних наблюдений загрязнены нефтепродуктами выше 1 Ф в 100% отобранных проб.

Продолжено определение содержания нефтепродуктов в почве Национального парка «Самарская Лука» и АГМС АГЛОС. Среднее их содержание в почве НПП «Самарская Лука» составило 1,1 Ф, в почве АГМС АГЛОС – не превысило уровня Фона.
В 2015 г. проводилось определение содержания нефтепродуктов в почве района буферной базы п. Гранный Волжского района. Средняя и максимальная концентрация нефтепродуктов составили 3,2 Ф и 12,0 Ф.

4.4.3.3. Загрязнение почв фтором, нитратами и сульфатами

Продолжены наблюдения за содержанием фтора, нитратов и сульфатов в почвах парка пансионата «Дубки», парка «60 лет Октября», а также Национального природного парка «Самарская Лука» и АГМС АГЛОС. Среднее содержание фтора и нитратов в почве исследуемых объектов составили сотые-десять доли ПДК (0,07-0,5 ПДК), максимальное – 0,1-0,9 ПДК. Превышение предельно допустимой концентрации наблюдалось по сульфатам, максимальное содержание которых в почве парка пансионата «Дубки» составило 1,6 ПДК и в почвах парка «60 лет Октября» и АГМС АГЛОС – 1,2 ПДК соответственно.

Почвы парка пансионата «Дубки» и АГМС АГЛОС относятся к категории от «нейтральные» до «слабощелочные» (pH=7,3-7,4 и pH=7,3-7,6 соответственно), НПП «Самарская Лука» – «ближкие к нейтральным» (pH=6,0-6,3), парка «60 лет Октября» – от «ближкие к нейтральным» до «нейтральные» (pH=5,9-6,9).

Загрязнение почв в г.о. Новокуйбышевск.

В 2015 году было осуществлено обследование почв г.о.Новокуйбышевск, в ходе которого было отобрано 50 объединенных проб почвы. Исследование загрязнения отобранных проб почвы проводилось по следующим показателям: уровень рН солевой вытяжки; нефтепродукты, кислоторастворимые формы тяжелых металлов (алюминий, никель, цинк, медь, свинец, кадмий, марганец, ртуть, мышьяк), нитраты, фтор, сульфат-ион, пестициды (ПХБ).

По уровню рН солевой вытяжки почвы г.о.Новокуйбышевск относятся к категории от «нейтральные» до «сильнощелочные» (pH от 7,0 до 8,7 единиц).

Среднее содержание тяжелых металлов не превышает уровня ПДК (ОДК). Средние концентрации ртути и мышьяка также в пределах гигиенических нормативов – 0,02 ПДК и 0,5 ОДК соответственно. Максимальное содержание свинца в 1,8 раза превысило уровень ПДК (см. картограмму 4.4.3.3.1.). В 14% отобранных проб зарегистрировано превышение ПДК по свинцу. Среднее содержание алюминия составило 6224 мг/кг (5,4 Ф).

Содержание нефтепродуктов в почвах обследуемой территории в 100% отобранных проб превышает значение расчетного фонового уровня для Самарской области (см. картограмму 4.4.3.3.2).

Содержание сульфат-ионов превышает предел допустимого уровня в 22 % отобранных проб.

Содержание нитратов и фтора соответствует гигиеническим нормативам. В почве города среднее содержание ОК полиэлорбифенилов (ПХБ) не превысило норму и составило 0,6 ПДК при максимальном 1,5 ПДК.

Почвы всей обследуемой территории, согласно показателю загрязнения комплексом тяжелых металлов, относятся к «допустимой» категории загрязнения, Zф = 4.
4.4.3.4. Снятие и использование плодородного слоя почвы

В процессе добычи полезных ископаемых, при производстве строительных, мелиоративных, геологоразведочных и других работ, размещении и захоронении отходов производства и потребления и иных видов хозяйственной деятельности, связанных с нарушением почвенного покрова на территории области производится снятие и складирование плодородного слоя почвы для его дальнейшего использования (на цели рекультивации нарушенных и загрязненных земель, повышения плодородия почвы и др.).

Таблица 4.4.3.4.1.

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Единица измерения</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наличие заскладированного плодородного слоя почвы на 01.01.2015 г. - всего</td>
<td>тыс м³</td>
<td>9629,67</td>
</tr>
<tr>
<td>За отчетный 2015 г.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Снято плодородного слоя почвы:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>площадь</td>
<td>га</td>
<td>1969,99</td>
</tr>
<tr>
<td>объем</td>
<td>тыс м³</td>
<td>6636,32</td>
</tr>
<tr>
<td>Использовано плодородного слоя почвы</td>
<td>тыс м³</td>
<td>7087,99</td>
</tr>
<tr>
<td>в том числе на:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>рекультивацию земель</td>
<td>тыс м³</td>
<td>7057,67</td>
</tr>
<tr>
<td>улучшение малопродуктивных угодий</td>
<td>тыс м³</td>
<td>0,00</td>
</tr>
<tr>
<td>другие цели</td>
<td>тыс м³</td>
<td>40,32</td>
</tr>
<tr>
<td>Улучшено малопродуктивных угодий снятым плодородным слоем почвы</td>
<td>га</td>
<td>0,00</td>
</tr>
<tr>
<td>Наличие заскладированного плодородного слоя почвы на 01.01.2016 г. - всего</td>
<td>тыс м³</td>
<td>9171,31</td>
</tr>
</tbody>
</table>

4.5. Пользование лесом

На территории Самарской области в 2015 году ведение лесного хозяйства, контроль и надзор за соблюдением лесного законодательства осуществляли департамент лесного хозяйства Министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области, ФГУ Национальный парк «Самарская Лука», ФГУ Национальный парк «Бузулукский Бор»; контроль и надзор за соблюдением лесного законодательства осуществляло ФГБУ «Жигулевский государственный природный биосферный заповедник им. И.И. Спрыгина»; выполнение лесохозяйственных, лесовосстановительных, лесозащитных работ (в том числе связанных с охраной лесов и тушением лесных пожаров) осуществляло ГБУ СО «Самаралес», ГКУ СО «Самарские лесничества».

На территории области основными видами использования лесов являются: осуществление рекреационной деятельности; освоение древесных ресурсов; ведение охотничьего хозяйства; строительство и эксплуатация линейных объектов; заготовка, сбор недревесных лесных ресурсов; ведение сельского хозяйства. В соответствии с приказом Федерального агентства лесного хозяйства от 30.12.2008 № 435 «Об определении
количества лесничеств на территории Самарской области и установления их границ»
opределено 18 лесничеств, из них 17 расположены на землях лесного фонда, 1 – на землях иных категорий (Тольяттинское лесничество). Общая площадь лесного фонда лесничеств 582,8 тыс. га, покрытая лесом – 527,9 тыс. га.

Освоение лесов осуществляется в целях обеспечения их многоцелевого, рационального, непрерывного, неистощительного использования. Освоение лесов ведется с соблюдением их целевого назначения и выполнения ими полезных функций.

В рамках исполнения переданных полномочий Российской Федерацией в области лесных отношений, организация использования лесов министерством осуществляется путем предоставления государственных услуг:

- по предоставлению выписки из государственного лесного реестра;
- по предоставлению в пределах земель лесного фонда лесных участков в постоянное (бессрочное) пользование, аренду, безвозмездное срочное пользование;
- по выдаче разрешений для выполнения работ по геологическому изучению недр на землях лесного фонда;
- по заключению договоров купли-продажи лесных насаждений;
- по проведению государственной экспертизы проекта освоения лесов.

По всем предоставляемым государственным услугам утверждены административные регламенты, регламентирующие порядок представления данных государственных услуг.

В 2015 году управлением лесного планирования и организации лесопользования рассмотрено 12 264 обращения граждан и юридических лиц по вопросам использования лесов, в том числе подано 68 заявлений по предоставлению выписки из государственного лесного реестра на платной основе. Плата за предоставление выписок составила 15 900,0 рублей.

Использование лесов это любая разрешенная в лесах деятельность граждан и юридических лиц, которая осуществляется с предоставлением или без предоставления лесных участков, с изъятием или без изъятия лесных ресурсов. Участки лесного фонда могут предоставляться в пользование на правах: постоянного (бессрочного) пользования, аренды, безвозмездного срочного пользования. Заготовка древесины осуществляется гражданами и юридическими лицами на основании договоров купли-продажи лесных насаждений в порядке предпринимательской деятельности и для собственных нужд – отопления, возведения строений и иных нужд. Доминирующей формой использования лесов в Самарской области является аренда лесных участков.

По состоянию на 01.01.2016 года в реестре заключенных договоров числится 961 договор, в том числе: 915 договоров аренды лесных участков, 31 договор постоянного (бессрочного) пользования лесными участками, 36 договоров безвозмездного срочного пользования, 18 договоров купли-продажи лесных насаждений. Также министерством выдано 9 разрешений на выполнение работ по геологическому изучению недр и разработке месторождений полезных ископаемых.

Общая площадь лесных участков, переданных для использования составляет 147,0 тыс. гектаров, (25,2% общей площади лесов, расположенных на землях лесного фонда), в том числе 146,9 тыс. гектаров - в аренду, 0,085 тыс. гектаров - в постоянное (бессрочное) пользование, 0,018 тыс. гектаров - в безвозмездное срочное пользование.

Хозяйственная деятельность на арендованных участках осуществляется практически по всему спектру видов использования лесов, предусмотренных Лесным кодексом Российской Федерации (таблица 4.5.1).

Наиболее приоритетным для Самарской области, является предоставление лесных участков:

- для осуществления рекреационной деятельности и осуществления видов деятельности в сфере охотничьего хозяйства, это в первую очередь обусловлено наличием
разнообразных ландшафтов, сочетающих лесные, водные (речные), луговые (степные), горные компоненты, формирующих пейзаж и имеющих высокую эстетичность, наличие

Таблица 4.5.1.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид использования</th>
<th>Количество договоров аренды, шт.</th>
<th>Площадь арендованных лесных участков, тыс. га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>на 01.01.2015</td>
<td>на 01.01.2016</td>
</tr>
<tr>
<td>1</td>
<td>Заготовка древесины</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Заготовка пищевых, лесных ресурсов и сбор лекарственных трав</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Осуществления видов деятельности в сфере охотничьего хозяйства</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Ведение сельского хозяйства</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Осуществление рекреационной деятельности</td>
<td>604</td>
<td>577</td>
</tr>
<tr>
<td>6</td>
<td>Выполнение работ по геологическому изучению недр, разработки полезных ископаемых</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Строительство и эксплуатация искусственных водных объектов, а также гидротехнических сооружений и специализированных портов</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Строительство реконструкция, эксплуатация и реконструкция линейных объектов</td>
<td>218</td>
<td>202</td>
</tr>
<tr>
<td>9</td>
<td>Переработка древесины и иных лесных ресурсов</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Итого</td>
<td>975</td>
<td>915</td>
</tr>
</tbody>
</table>

развитой дорожно-транспортной сети и приуроченность лесных массивов к крупным населенным пунктам;

- для выполнения работ по геологическому изучению недр и разработки месторождений полезных ископаемых, а также строительства, реконструкции и эксплуатации линейных объектов. Это обусловлено тем, что Самарская область является одним из ведущих регионов России с высоким уровнем социально-экономического развития, который занимает важное место в экономики России и Приволжского федерального округа в силу своего географического и промышленного потенциала. У промышленного комплекса Самарской области лидирующие позиции по первичной переработке нефти, также на территории области сформирована крупнейшая транспортно-коммуникационная система, в связи с чем, вопрос о постоянной необходимости проведения ремонтно-профилактических мероприятий на разных участках объектов является особенно значимым.

В соответствии с утверждённым порядком предоставления государственных услуг в 2015 году министерством заключено 17 договоров аренды лесных участков, договоров постоянного (бессрочного) пользования и договоров безвозмездного (срочного) пользования лесными участками, заключено 2408 договоров купли-продажи лесных насаждений для собственных нужд (с общим объемом заготовки древесины 59,6 тыс. куб.). По результатам аукционов, проводимых путем повышения начальной цены
предмета аукциона, заключено 18 договоров купли-продажи лесных насаждений (с общим объемом заготовки древесины 9,6 тыс. куб.).

В соответствии с действующим лесным законодательством лица, получившие лесные участки в постоянное (бессрочное) пользование или в аренду, разрабатывают проект освоения лесов, на основании которого осуществляется использование лесных участков. Целью экспертизы является оценка соответствия проекта освоения лесов лесохозяйственному регламенту лесничества или лесопарка, Лесному плану субъекта Российской Федерации и законодательству Российской Федерации, а также принципам рационального использования и сохранения биологического разнообразия лесов.

В 2015 году проведена государственная экспертиза 87 проектов освоения лесов, по результатам которой выдано 69 положительных и 18 отрицательных заключений.

Таким образом, в 2015 году доход от платы за использование лесов на 1 га арендованной площади лесных участков в сравнении с 2012 годом увеличился на 59,49 руб., с 2013 годом на 6,79 руб., в тоже время, по сравнению с 2014 годом доход от платы за использование лесов на 1 га арендованной площади лесных участков уменьшился на 29,86 руб. (диаграмма 4.5.1.).

Диаграмма 4.5.1.

Доход от платы за использование лесов на 1 га арендованной площади, руб. на 1 га

<table>
<thead>
<tr>
<th>Год</th>
<th>Доход от платы за использование лесов на 1 га арендованной площади, руб. на 1 га</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>428,6</td>
</tr>
<tr>
<td>2013</td>
<td>481,3</td>
</tr>
<tr>
<td>2014</td>
<td>517,95</td>
</tr>
<tr>
<td>2015</td>
<td>488,09</td>
</tr>
</tbody>
</table>

Лесоустройство и кадастровый учет.

С целью обеспечения повышения продуктивности, экономической эффективности и социальной значимости использования лесов области за счет средств субвенций федерального бюджета (13,8 млн. руб.) выполнены лесоустроительные работы на территории 3 лесничеств (Кинель-Черкасское, Большеглушицкое, Шигонское) общей площадью 83,9 тыс. га.

Таксация леса как основный вид лесоустроительных работ выполнялась глазомерно-измерительным способом по первому таксационному разряду, исполнителями
работ по государственным контрактам являлись: Поволжский филиал государственной инвентаризации лесов «Поволжский леспроект», Вятский, Башкирский, Казанский, Пензенский и Ульяновский филиалы ФГУП «Рослесинфорг».

В результате проведенных министерством работ по лесоустройству на территории лесного фонда Самарской области в 2013-2015 годах, по состоянию на 01.01.2016 г. работы по лесоустройству на территории 16 лесничеств Самарской области завершены в полном объеме.

Рациональное использование земельных и лесных ресурсов невозможно без однозначного установления границ земель лесного фонда, а также обеспечения легитимности объектов недвижимости – лесных участков. Выходом из сложившейся ситуации является проведение кадастровых работ и внесение сведений о лесных участках в государственный кадастр недвижимости. Одной из важнейших и сложных задач, стоящих перед лесной отраслью в настоящее время, остается постановка на государственный кадастр недвижимости лесных участков. На территории лесного фонда Самарской области данные работы Федеральным агентством лесного хозяйства начаты в 2013 году, и по состоянию на 01.01.2016 г. на государственный кадастровый учет поставлены лесные участки на общей площади – 10 706,72 га.

Федеральным законом от 01.12.2014 № 384-ФЗ «О федеральном бюджете на 2015 год и на плановый период 2016 и 2017 годов» объем субвенций Самарской области на осуществление переданных полномочий в области лесных отношений предусмотрен в размере 142 443,02 тыс. руб. Средства субвенций федерального бюджета, выделенные министерству на осуществление переданных полномочий в области лесных отношений по состоянию на 01.01.2016 г. освоены на 99,3%.

Реализация мероприятий по развитию лесной отрасли в Самарской области осуществлялась в рамках государственной программы «Развитие лесного хозяйства Самарской области на 2014-2018 годы и на период до 2022 года» (далее – Программа), которой предусмотрено совершенствование материально-технической базы лесной отрасли, проведение мероприятий по лесоустройству, своевременное воспроизводство, охрана и защита лесов. Основной задачей, стоящей перед отраслью в 2015 году, являлось выполнение всех лесохозяйственных мероприятий, установленных Лесным планом Самарской области. К лесохозяйственным мероприятиям относится комплекс организационных и технических действий по взращиванию леса, лесовосстановлению, охране и защите леса, направленных на увеличение стабильности, эффективности, природоохранных, усилению природоохранных, санитарно-гигиенических и оздоровительных свойств лесов. К важным лесохозяйственным мероприятиям относятся лесовосстановительные работы, преобразование насаждений, рубки ухода, уход за подростом и подлеском, санитарные рубки, а также санитарно-оздоровительные и противопожарные мероприятия.

На реализацию программных мероприятий в 2015 году выделено финансирование в общем объеме 478873,066 тыс. рублей, в том числе:
- средства федерального бюджета – 142443,02 тыс. рублей;
- средства областного бюджета – 336429,86 тыс. рублей.

По итогам 2015 года освоение бюджетных средств составило 96%.

В ходе реализации программы в 2015 году были достигнуты следующие результаты:
1. проведены работы по лесовосстановлению на площади 1104,6 га;
2. выполнен агротехнический уход за лесными культурами на площади земель лесного фонда Самарской области 10022,4 га, на территории иных земель городского округа Тольятти - 753,2 га;
3. произведено дополнение лесных культур на площади земель лесного фонда Самарской области 966,6 га, на территории иных земель городского округа Тольятти - 122,3 га;
4. подготовлена почва для будущего года посадки лесных культур на площади 495,8 га;
5. проведен уход за молодняками на площади 889,6 га;
6. осуществлен уход за объектами лесного семеноводства на площади 29,6 га;
7. лесопатологическое обследование лесонасаждений Самарской области на площади 20917 га;
8. произведена обработка лесных насаждений от вредителей леса на площади 8122,9 га;
9. выполнены санитарно-оздоровительные мероприятия на площади 2,5 тыс. га;
10. произведена расчистка нелегких лесных участков, пострадавших в результате последствий лесных пожаров, на площади 105,1 га;
11. проведена уборка от захламленности лесных участков, расположенных вдоль автомобильной дороги федерального значения Самара-Тольятти (М5) на площади 74 га;
12. проведены противопожарные профилактические мероприятия на площади 582,8 тыс. га;
13. проведены лесоустроительные работы на территории 3 лесничеств Самарской области общей площадью 83,85 тыс. га;
14. поставлены на кадастровый учет лесные участки, расположенные в границах городского округа Тольятти, общей площадью 1196,4 га;
15. разработаны проекты лесохозяйственных регламентов 6 лесничеств Самарской области, на которых произведены лесоустроительные работы в 2014 году;
16. проведено межевание и постановка на государственный кадастровый учет лесных участков для дальнейшего предоставления их в аренду на площади 36,1 га;
17. 14 специалистов лесного хозяйства прошли повышение квалификации.
Результаты достижения значений показателей (индикаторов) Программы приведены в таблице 4.5.2.

Таблица 4.5.2

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование показателя (индикатора)</th>
<th>Ед. изм.</th>
<th>Значения показателей (индикаторов) государственной программы</th>
<th>Степень достижения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>плановые</td>
<td>фактически достигнутые</td>
</tr>
<tr>
<td>1</td>
<td>Доля молодняков, переводимых в категорию хозяйственно-ценных древесных насаждений, в общей площади</td>
<td>%</td>
<td>25,3</td>
<td>25,7</td>
</tr>
<tr>
<td>2</td>
<td>Доля площади воспроизводства лесных культур в площади покрытой лесом территории городского округа Тольятти (не учитывается при расчете среднего значения)</td>
<td>%</td>
<td>14,5</td>
<td>14,5</td>
</tr>
<tr>
<td>3</td>
<td>Доля площади ценных лесных составе покрытых лесной растительностью земель лесного фонда насаждений в составе покрытых лесной растительностью земель</td>
<td>%</td>
<td>48,68</td>
<td>49,7</td>
</tr>
<tr>
<td>4</td>
<td>Коэффициент лесистости территории Самарской области</td>
<td>%</td>
<td>12,79</td>
<td>12,73</td>
</tr>
<tr>
<td></td>
<td>Коэффициент лесистости территории городского округа Тольятти</td>
<td>%</td>
<td>18,6</td>
<td>18,6</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>Доля площади лесов, выбывших из состава покрытых лесной растительностью земель лесного фонда в Самарской области в связи с воздействием пожаров, в общей площади покрытых лесной растительностью земель лесного фонда в Самарской области</td>
<td>%</td>
<td>0,09</td>
<td>0,03</td>
</tr>
<tr>
<td>7</td>
<td>Удельный вес площади земель, покрытых лесами, на территории городского округа Тольятти, пройденных пожарами, в общей площади земель, покрытых лесами, на территории городского округа Тольятти (не учитывается при расчете среднего значения)</td>
<td>%</td>
<td>0,12</td>
<td>0,05</td>
</tr>
<tr>
<td>8</td>
<td>Доля крупных лесных пожаров в общем количестве лесных пожаров</td>
<td>%</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>9</td>
<td>Доля лесных пожаров, ликвидированных в течение первых суток со дня обнаружения (по количеству случаев), в общем количестве лесных пожаров (не учитывается при расчете среднего значения)</td>
<td>%</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>Доля площади лесов, выбывших из состава покрытых лесной растительностью земель лесного фонда в Самарской области в связи с воздействием вредных организмов, в общей площади покрытых лесной растительностью земель лесного фонда в</td>
<td>%</td>
<td>0,01</td>
<td>0,001</td>
</tr>
<tr>
<td>11</td>
<td>Доля ликвидированной захламленности в ежегодно выявляемом ее объеме на территории городского округа Тольятти (не учитывается при расчете среднего значения)</td>
<td>%</td>
<td>33</td>
<td>16,2</td>
</tr>
<tr>
<td>12</td>
<td>Отношение площади проведенных санитарно-оздоровительных мероприятий к площади погибших и поврежденных лесов</td>
<td>%</td>
<td>21,1</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Уровень выполнения государственного задания государственными учреждениями в сфере лесного хозяйства</td>
<td>%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>Доля площади лесов, на которых проведены мероприятия лесоустройства в течение последних 10 лет, в площади лесов с интенсивным использованием лесов и ведением лесного хозяйства</td>
<td>%</td>
<td>97,4</td>
<td>97,4</td>
</tr>
<tr>
<td>15</td>
<td>Отношение фактического объема заготовки древесины к установленному допустимому объему изъятия древесины</td>
<td>%</td>
<td>22,1</td>
<td>7,3</td>
</tr>
<tr>
<td>16</td>
<td>Доля объема заготовки древесины выборочными рубками в общем объеме заготовки древесины</td>
<td>%</td>
<td>62,6</td>
<td>75,9</td>
</tr>
<tr>
<td>17</td>
<td>Доля площади иных категорий земель, покрытых лесами, в границах городского округа Тольятти, поставленных на кадастровый учет, в общей площади земель, покрытых лесами, в границах городского округа Тольятти</td>
<td>%</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>Доля площади лесов, переданных в аренду, в общей площади лесного фонда в Самарской области</td>
<td>%</td>
<td>28,7</td>
<td>25,8</td>
</tr>
<tr>
<td>19</td>
<td>Доля площади земель лесного фонда в Самарской области, включенная в централизованную базу данных геоинформационной системы в сфере лесного хозяйства, в общей площади земель лесного фонда в Самарской области</td>
<td>%</td>
<td>75</td>
<td>97,3</td>
</tr>
<tr>
<td>20</td>
<td>Доля специалистов лесного хозяйства Самарской области, прошедших подготовку, переподготовку и повышение квалификации, в штатной численности</td>
<td>%</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>21</td>
<td>Доля исполненных федеральных полномочий по осуществлению федерального государственного лесного надзора и федерального государственного пожарного надзора в лесах на территории лесничеств Самарской области в общем их объеме</td>
<td>%</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>Объем платежей в бюджетную систему Российской Федерации от использования лесов, расположенных на землях лесного фонда, в расчете на 1 гектар земель лесного фонда</td>
<td>%</td>
<td>112,7</td>
<td>123,1</td>
</tr>
<tr>
<td>23</td>
<td>Отношение количества случаев с установленными нарушителями лесного законодательства к общему количеству зарегистрированных случаев нарушения лесного законодательства</td>
<td>%</td>
<td>99,1</td>
<td>90</td>
</tr>
</tbody>
</table>

Санитарно-оздоровительные мероприятия. Лесопатологические обследования в 2015 году запланированы и проведены на площади 20917,0 га.

СОМ проведены на площади 3936,7 га, в том числе:
- выборочные санитарные рубки – 1050,1 га; сплошные санитарные рубки – 172,5 га;
- очистка леса от захламления, загрязнения, иного негативного воздействия - 2714,1 га (по отчету формы 3.6 - ГЛР).

Мероприятия по локализации и ликвидации очагов вредных лесных насекомых проведены авиационным способом на площади 8,1 тыс. га, в т.ч. с использованием биологических препаратов на площади 7,9 тыс. га против шелкопряда непарного и химическим на площади 0,2 тыс. га против пилильщика-ткача звездчатого. Мерами борьбы ликвидированы очаги на площади 5,0 тыс.га. В результате СОМ ликвидированы очаги болезней на площади 99,5 га.

Воспроизводство лесов. На воспроизводство лесов Самарской области в 2015 году финансирование выделено в объеме 44,2 млн. рублей.
По итогам года лесовосстановление выполнено на 100% (всего - 1186 га, в том числе: содействие естественному возобновлению леса – 220 га, искусственное лесовосстановление лесных культур - 966 га). Агротехнические уходы за лесными культурами выполнены на площади 11187 га, проведено дополнение лесных культур на площади 1193 га, подготовлена почва для посадки лесных культур - 565 га. С целью формирования устойчивых хозяйственно-ценных насаждений проведены рубки ухода за молодняками - 2508 га.

Заготовлено 2779 кг семян различных пород, в том числе улучшенных семян сосны обыкновенной в количестве 113,3 кг.

В целях обеспечения устойчивого развития, а в дальнейшем функционирования комплекса лесных питомников на территории региона разработана и утверждена «Концепция развития питомнического хозяйства Самарской области».

Количество и ассортимент выращиваемого посадочного материала обеспечат реализацию программы «Развития лесного хозяйства Самарской области на 2014-2018 годы и на период до 2022 года».

На территории Ставропольского лесничества выполнены работы по проектированию Федоровского лесного питомника и завершено строительство первой очереди питомника на сумму 24,1 млн. рублей.

Охрана лесов от пожаров. Одной из основных задач, стоящей перед лесной отраслью – это охрана лесов от пожаров. С 15 апреля 2015 года приказом министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области от 03.04.2015 № 117 «Об организации охраны лесов от пожаров в 2015 году» был открыт пожароопасный сезон 2015 года, 15 октября был закрыт пожароопасный сезон 2015 года, в связи с установившейся устойчивой дождливой погодой на территории области.

За прошедший пожароопасный сезон в 2015 году на землях лесного фонда зарегистрировано 49 лесных пожаров на общей площади 31,2 га, из которых 78% (38 случаев) произошло по причине неосторожного обращения с огнём, 18% (9) - переход огня с сопредельных территорий, 4% (2) – в результате грозовой активности. Все пожары низовые и ликвидированы в день обнаружения. Не допущено ни одного крупного лесного пожара (более 25 га.). Средняя площадь одного пожара составила 0,64 га. На тушении было задействовано 830 человек и 318 единиц техники, в том числе силы и средства ГБУ СО «Самаралес» 586 человек и 250 единиц техники. Общий ущерб составил 853,62 тыс. рублей, в том числе затраты на тушение - 795,38 тыс. рублей.

Для сравнения с пожароопасным сезоном 2014 года количество лесных пожаров снизилось в 1,3 раза, площадь сократилась в 1,5 раза (2014 год – 63 пожара на площади 46,9 га).

Анализ показал, что наиболее горимыми районами по-прежнему остаются Красноярский и Ставропольский, леса которых обусловлены наличием хвойных насаждений, развителенной сетью автомобильных и железных дорог, линейных объектов, многочисленных рекреационных зон и населенных пунктов, географическая близость крупных городов (Самара, Тольятти). На территории Красноярского района произошло 26 лесных пожаров, что составляет 53 % от общего количества возгораний в лесном фонде (49), в Ставропольском – 6 (12%). Основной причиной возгораний в этих районах являлось неосторожное обращение с огнём 93% (30 случаев) и 2-х переход огня с сопредельных территорий.

- Реконструкция и эксплуатация лесных дорог предназначенных для охраны лесов от пожаров на протяжении 30 км;
- Прокладка и прочистка просек, противопожарных разрывов и минерализованных полос на протяжении 21143,1 км;
- Проведение профилактического контролируемого противопожарного выжигания хвороста, лесной подстилки, сухой травы и других лесных горючих материалов на площади 10000 га;
- Изготовление и установка шлагбаумов, устройство преград, обеспечивающих ограничение пребывания граждан в лесах в целях обеспечения пожарной безопасности – 300 шт.;
- Окашивание просек, минерализованных полос и земельных участков, граничащих с лесным фондом – 9396,4 га;
- Содержание действующих и организация новых зон отдыха граждан, пребывающих в лесах – 224 шт.;
- Установка, размещение, содержание стендов и других знаков и указателей, содержащих информацию о лесах и мерах пожарной безопасности в лесах – 271 шт.

Министерством совместно с органами местного самоуправления в пожароопасный период активно проводилась разъяснительная работа среди сельхозпроизводителей и населения по вопросу соблюдения лесного законодательства и правил пожарной безопасности на территории лесного фонда. С начала года распространено 5000 брошюр с разъяснением правил соблюдения пожарной безопасности в лесах, в СМИ размещено более 80 публикаций, организованы 12 выступлений на радио и 7 на телевидение, в средних общеобразовательных учреждениях проведено 65 открытых уроков о бережном отношении к лесу и правилах поведения во время пребывания в лесу.

В соответствии с «Правилами разработки и утверждения плана тушения лесных пожаров», утвержденных постановлением Правительства РФ от 17.05.2011 № 377 государственным казенным учреждением Самарской области «Самарские лесничества» до 25 декабря 2014 года были разработаны и согласованы с муниципальными образованиями Самарской области планы тушения лесных пожаров на территории лесничеств в 2015 году.

Согласно постановлению Правительства РФ от 18.05.2011 № 378 министерством в феврале 2015 года был разработан, согласован с Рослесхозом (12.02.2015 г.) и утвержден Правительством Самарской (16.02.2015 г.) Сводный план тушения лесных пожаров на территории Самарской области в 2015 году.

Сводным планом предусматривалось создание 493 мобильных групп пожаротушения общей численностью 3190 человек. В их распоряжении: 478 пожарных автомобилей, 25 МЛПК, 80 тракторов, 8 бульдозеров, 211 единиц различной автомобильной, водной и тракторной техники, 70 плугов, 409 единиц противопожарного оборудования (мотопомпы, воздуховодки, бензопилы, аппараты зажигательные), 1270 ранцевых лесных огнетушителей, 1023 радиостанций для связи на пожарах и 2290 штук лесопожарного инвентаря.

До наступления пожароопасного сезона 2015 года министерством заключены и пролонгированы межведомственные соглашения с федеральными органами исполнительной власти, органами государственной власти Самарской области, соглашения о взаимодействии с уполномоченными органами государственной власти.
субъектов Российской Федерации, граничащих с Самарской областью, а также соглашения с заинтересованными предприятиями и организациями.

В соответствии с «Планом мероприятий по охране лесов от пожаров на пожарноопасный сезон 2015 года» и «Сводным планом тушения лесных пожаров на территории Самарской области в 2015 году» государственным бюджетным учреждением Самарской области «Самаралес» к началу пожарноопасного сезона организована работа 17 пожарно-химических станций, из них 4 ПХС III-го типа, 6 ПХС II-го типа и 7 ПХС I-го типа, отремонтирована и введена в эксплуатацию вся имеющаяся на ПХС техника и оборудование, создан резерв ГСМ в количестве 23 тонн, в том числе дизельного топлива 12 тонн, установлена радиосвязь со всеми управлением государственного бюджетного учреждения Самарской области «Самаралес», патрульными и пожарными автомашинами, обеспечено функционирование единой системы видеомониторинга и обнаружения очагов лесных пожаров, состоящая из 26 видеокамер с выводом видеонаблюдения в региональновую диспетчерскую службу в режиме «Онлайн». С 1 апреля 2015 года было организовано круглосуточное дежурство в региональной диспетчерской службе на базе ПХС - III типа в поселке Волжский Красноярского района по сбору, анализу и учёту природных пожаров, возникших на территории Самарской области.

В связи со сложившимися погодными условиями, в течение пожарноопасного сезона 2015 года, постановлениями Правительства Самарской области от 01.04.2015 № 158 и от 22.09.2015 № 593 вводился особый противопожарный режим на территории Самарской области в периоды с 01.05.2015 по 13.09.2015 и с 22.09.2015 по 15.10.2015.

В период действия особого противопожарного режима запрещалось проведение пала сухой травы (стерни) и пожнивных остатков, при наступлении III – V классов пожарной опасности по условиям погоды ограничивался въезд транспортных средств и пребывание граждан в лесах, а также проведение работ, связанных с разведением огня в лесном фонде.

4.6. Пользование объектами животного мира, в том числе использование водных биоресурсов

Большая часть Самарской области занята ландшафтами переходными от лесов к степям. В связи с этим мало представлены выраженные, типичные условия для обитания как лесных, так и степных видов животных, отнесенных к охотничьим ресурсам.

Слабое освоение лиственных лесов на территории области приводит к ухудшению условий обитания лося, косули, кабана. Молодые лесные культуры составляют малую часть лесов. Остальные леса (зрелые и перестойные) для охотничьих ресурсов являются малопродуктивными, малокормными и слабозащитными.

Развитая сеть железных и автодорог, промышленные зоны, подавляющее сельскохозяйственное освоение земель создают высокий уровень фактора беспокойства, что, наряду с вышеназванными факторами обуславливает средний бонитет охотугодий – III. Это не позволяет существенно увеличить численность охотничьих ресурсов.

В то же время, благодаря осуществляемым мероприятия по сохранению и воспроизводству охотничьих ресурсов, плотность их обитания, в частности копытных животных, значительно выше, чем в среднем по России.

Степные охотничьи угодья ежегодно подвергаются уничтожению при весеннем и осеннем сжигании растительности предварительными палами. Большие пахотные участки наиболее неблагоприятны для обитания диких животных.

Более ценными угодьями для обитания охотничьих ресурсов являются участки покрытые лесом, общая площадь которых в охотничьих угодьях составляет 308,6 тыс. га.

Структура охотничьих угодий отражает основные характеристики среды обитания охотничьих ресурсов на территории Самарской области (таблица 4.6.1).
Таблица 4.6.1.

<table>
<thead>
<tr>
<th>Категории среды обитания охотничьих ресурсов</th>
<th>% от площади угодий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сельскохозяйственные угодья</td>
<td>70,54</td>
</tr>
<tr>
<td>Леса</td>
<td>5,76</td>
</tr>
<tr>
<td>Лугово-степные комплексы</td>
<td>0,56</td>
</tr>
<tr>
<td>Внутренние водоемы</td>
<td>5,34</td>
</tr>
<tr>
<td>Молодняки и кустарники</td>
<td>2,73</td>
</tr>
<tr>
<td>Пойменные комплексы</td>
<td>0,83</td>
</tr>
<tr>
<td>Болота</td>
<td>1,09</td>
</tr>
<tr>
<td>Преобразованные и повреждённые участки</td>
<td>0,08</td>
</tr>
<tr>
<td>Береговые комплексы</td>
<td>0,004</td>
</tr>
<tr>
<td>Пустыни и камни</td>
<td>0,0</td>
</tr>
<tr>
<td>Непригодные для ведения о/х участки</td>
<td>13,07</td>
</tr>
</tbody>
</table>

Леса расположены на территории области крайне неравномерно. Если на юге области (в Алексеевском, Большеглушицком, Большечерниговском, Красноармейском, Пестравском районах) лесистость составляет всего 1,5 %, то в северной части (в Ставропольском, Сызранском, Красноярском, Похвистневском, Шигонском районах) на долю лесов приходится до 22-26 % площади.

Свойственная лесам Самарской области мозаичная структура особенно благоприятна для обитания копытных животных, а также поддержания видового разнообразия флоры и фауны. Антропогенный фактор способствует увеличению численности плотоядных животных (лисица, енотовидная собака, одичавшие собаки и кошки), однако за последние годы аномальных колебаний численности отдельных видов животного мира на территории региона не регистрировалось.

Таблица 4.6.2.

<table>
<thead>
<tr>
<th>Млекопитающие</th>
<th>Численность</th>
</tr>
</thead>
<tbody>
<tr>
<td>олень благородный</td>
<td>515</td>
</tr>
<tr>
<td>олень пятнистый</td>
<td>222</td>
</tr>
<tr>
<td>косуля сибирская</td>
<td>7881</td>
</tr>
<tr>
<td>лось</td>
<td>2483</td>
</tr>
<tr>
<td>кабан</td>
<td>4942</td>
</tr>
<tr>
<td>волк</td>
<td>0</td>
</tr>
<tr>
<td>шакал</td>
<td>0</td>
</tr>
<tr>
<td>лисица обыкновенная</td>
<td>5444</td>
</tr>
<tr>
<td>корсак</td>
<td>31</td>
</tr>
<tr>
<td>собака енотовидная</td>
<td>262</td>
</tr>
<tr>
<td>барсук</td>
<td>3769</td>
</tr>
<tr>
<td>ласка</td>
<td>538</td>
</tr>
<tr>
<td>горностай</td>
<td>18</td>
</tr>
<tr>
<td>норки</td>
<td>1948</td>
</tr>
<tr>
<td>куница лесная</td>
<td>1182</td>
</tr>
<tr>
<td>лесной хорек</td>
<td>109</td>
</tr>
<tr>
<td>степной хорек</td>
<td>129</td>
</tr>
<tr>
<td>рысь</td>
<td>8</td>
</tr>
<tr>
<td>заяц-беляк</td>
<td>2670</td>
</tr>
<tr>
<td>Животные</td>
<td>Количество</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Заяц-русак</td>
<td>11630</td>
</tr>
<tr>
<td>Белка</td>
<td>249</td>
</tr>
<tr>
<td>Суслики</td>
<td>4083</td>
</tr>
<tr>
<td>Сурок-байбак</td>
<td>8193</td>
</tr>
<tr>
<td>Бобр европейский</td>
<td>5733</td>
</tr>
<tr>
<td>Ондатра</td>
<td>21776</td>
</tr>
<tr>
<td>Хомяки</td>
<td>58</td>
</tr>
<tr>
<td>Водяная полевка</td>
<td>406</td>
</tr>
<tr>
<td>Птицы</td>
<td></td>
</tr>
<tr>
<td>Вальдшнеп</td>
<td>5304</td>
</tr>
<tr>
<td>Глухарь обыкновенный</td>
<td>182</td>
</tr>
<tr>
<td>Куropатка серая</td>
<td>111441</td>
</tr>
<tr>
<td>Рябчик</td>
<td>50</td>
</tr>
<tr>
<td>Тетерев обыкновенный</td>
<td>13388</td>
</tr>
<tr>
<td>Вяхирь</td>
<td>8876</td>
</tr>
<tr>
<td>Голубь сизый</td>
<td>20163</td>
</tr>
<tr>
<td>Горлица большая</td>
<td>90</td>
</tr>
<tr>
<td>Горлица кольчата</td>
<td>138</td>
</tr>
<tr>
<td>Горлица обыкновенная</td>
<td>3239</td>
</tr>
<tr>
<td>Клинтух</td>
<td>35</td>
</tr>
<tr>
<td>Перепел обыкновенный</td>
<td>11132</td>
</tr>
<tr>
<td>Бекас обыкновенный</td>
<td>1439</td>
</tr>
<tr>
<td>Веретенник большой</td>
<td>65</td>
</tr>
<tr>
<td>Веретенник малый</td>
<td>107</td>
</tr>
<tr>
<td>Гаршнеп</td>
<td>254</td>
</tr>
<tr>
<td>Дупель обыкновенный</td>
<td>584</td>
</tr>
<tr>
<td>Кряква</td>
<td>80688</td>
</tr>
<tr>
<td>Чирок- свистунок</td>
<td>28988</td>
</tr>
<tr>
<td>Чирок- трескунок</td>
<td>38304</td>
</tr>
<tr>
<td>Серая утка</td>
<td>8490</td>
</tr>
<tr>
<td>Гоголь обыкновенный</td>
<td>996</td>
</tr>
<tr>
<td>Свиязь</td>
<td>2620</td>
</tr>
<tr>
<td>Красноносый нырок</td>
<td>505</td>
</tr>
<tr>
<td>Красноголовый нырок</td>
<td>29937</td>
</tr>
<tr>
<td>Хохлатая чернеть</td>
<td>1071</td>
</tr>
<tr>
<td>Крохаль</td>
<td>668</td>
</tr>
<tr>
<td>Огарь</td>
<td>1690</td>
</tr>
<tr>
<td>Шилохвость</td>
<td>2208</td>
</tr>
<tr>
<td>Широконоска</td>
<td>11137</td>
</tr>
<tr>
<td>Пеганка</td>
<td>547</td>
</tr>
<tr>
<td>Чибис</td>
<td>4572</td>
</tr>
<tr>
<td>Обыкновенный погоныш</td>
<td>160</td>
</tr>
<tr>
<td>Турухтан</td>
<td>102</td>
</tr>
<tr>
<td>Травник</td>
<td>61</td>
</tr>
<tr>
<td>Камышница обыкновенная</td>
<td>143</td>
</tr>
<tr>
<td>Коростель</td>
<td>2510</td>
</tr>
<tr>
<td>Кроншнеп большой</td>
<td>43</td>
</tr>
<tr>
<td>Кроншнеп средний</td>
<td>43</td>
</tr>
<tr>
<td>Пастушок</td>
<td>154</td>
</tr>
<tr>
<td>Лысуха</td>
<td>59245</td>
</tr>
</tbody>
</table>
Постановлением Губернатора Самарской области от 13.07.2015 №170 «Об утверждении лимитов и квот добычи охотничьих ресурсов на территории Самарской области на период с 1 августа 2015 года до 1 августа 2016 года» были установлены следующие лимиты добычи охотничьих ресурсов:

- лось - 167 особей, в том числе взрослые самцы во время гона - 8 особей, в возрасте до одного года - 17 особей;
- благородный олень - 23 особи в возрасте старше 1 года;
- пятнистый олень - 9 особей в возрасте старше 1 года;
- косуля (сибирская) - 551 особь, в том числе взрослые самцы во время гона - 24 особи, в возрасте до одного года - 208 особей;
- барсук - 210 особей.

Таблица 4.6.3.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Добыто, голов</th>
</tr>
</thead>
<tbody>
<tr>
<td>олень благородный</td>
<td>15</td>
</tr>
<tr>
<td>олень пятнистый</td>
<td>8</td>
</tr>
<tr>
<td>косуля сибирская</td>
<td>388</td>
</tr>
<tr>
<td>лось</td>
<td>128</td>
</tr>
<tr>
<td>кабан</td>
<td>1690</td>
</tr>
<tr>
<td>лисица обыкновенная</td>
<td>3583</td>
</tr>
<tr>
<td>барсук</td>
<td>93</td>
</tr>
<tr>
<td>куницца лесная</td>
<td>13</td>
</tr>
<tr>
<td>заяц-беляк</td>
<td>133</td>
</tr>
<tr>
<td>заяц-русак</td>
<td>3870</td>
</tr>
<tr>
<td>сурок-байбак</td>
<td>253</td>
</tr>
<tr>
<td>бобр европейский</td>
<td>55</td>
</tr>
<tr>
<td>ондатра</td>
<td>25</td>
</tr>
<tr>
<td>вальдшнеп</td>
<td>223</td>
</tr>
<tr>
<td>куропатка серая</td>
<td>127</td>
</tr>
<tr>
<td>тетерев обыкновенный</td>
<td>14</td>
</tr>
<tr>
<td>гуси</td>
<td>925</td>
</tr>
<tr>
<td>утки</td>
<td>20310</td>
</tr>
<tr>
<td>лысуха</td>
<td>1058</td>
</tr>
</tbody>
</table>

Таблица 4.6.4.

Распределение охотничьих угодий Самарской области

<table>
<thead>
<tr>
<th>Охотугодья</th>
<th>Количество организаций</th>
<th>Количество охотугодий</th>
<th>Площадь охотугодий тыс. га</th>
<th>Доля от площади охотугодий области %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Закрепленные</td>
<td>76</td>
<td>118</td>
<td>3606,8</td>
<td>77,5</td>
</tr>
<tr>
<td>Общедоступные</td>
<td>-</td>
<td>21</td>
<td>1048,5</td>
<td>22,5</td>
</tr>
</tbody>
</table>

В 2015 году успешно завершена реализация ведомственной целевой программы «Создание условий для устойчивого существования и рационального использования охотничьих ресурсов на территории Самарской области в 2013 – 2015 годах». Большинство показателей выполнения мероприятий программы перевыполнено, в том числе, существенно выросла общая численность охотничьих ресурсов на территории области в целом и на территории общедоступных охотугодий.
Сведения по борьбе с нарушениями законодательства в сфере охоты (борьба с браконьерством)

В результате мероприятий в области государственного охотничьего надзора за 2015 год выявлено 781 нарушение по следующим статьям КоАП РФ:

<table>
<thead>
<tr>
<th>Наименование статей</th>
<th>Выявлено нарушений</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11 КоАП РФ</td>
<td>11</td>
</tr>
<tr>
<td>8.33 КоАП РФ</td>
<td>102</td>
</tr>
<tr>
<td>8.37 КоАП РФ</td>
<td>668</td>
</tr>
</tbody>
</table>

В следственные органы направлены материалы по 33 событиям для возбуждения уголовных дел по признакам преступлений, предусмотренных статьёй 258 УК РФ (незаконная охота). По материалам уголовных дел, связанных с незаконной охотой, привлечено к уголовной ответственности 2 человека.

В 2015 году по результатам принятых мер на лиц, виновных в нарушении законодательства в области охоты, наложено штрафов на общую сумму 1891,7 тыс. руб. Предъявлено претензий и исков о возмещении вреда, причиненного охотничьим ресурсам и среде их обитания, на сумму 1 572,60 тыс. руб., взыскано по требованиям 1 436,20 тыс. руб.

С 2015 года на территории Самарской области осуществляется государственный надзор в области охраны и использования объектов животного мира и среды их обитания в части охраны и использования объектов животного мира, отнесенных к объектам охоты. В рамках указанных полномочий в текущем году проведено 6 проверок юридических лиц. В результате привлечено к ответственности 4 юридических лица (одно из них трижды) и 5 должностных лиц.

В части компенсации вреда, причиненного охотничьим ресурсам и среде их обитания в процессе хозяйственной деятельности предприятий, в областной бюджет в 2015 году поступило 2 047 212,17 руб.

В рейтинге субъектов Российской Федерации по исполнению полномочий в сфере охоты и сохранения охотничьих ресурсов Самарская область стабильно в числе лидеров по России и на первом месте в Приволжском федеральном округе.

Таблица 4.6.5.

Фактически достигнутые Самарской областью значения целевых показателей эффективности деятельности по осуществлению переданных полномочий Российской Федерации в области охоты и сохранения охотничьих ресурсов за 2015 год

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Целевой показатель</th>
<th>Единица измерения</th>
<th>План 2015</th>
<th>Факт 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Отношение фактической добычи охотничьих ресурсов к установленным лимитам добычи по отдельным видам охотничьих ресурсов:</td>
<td>%</td>
<td>72,2 65 59</td>
<td>86,4 80,3 73,3</td>
</tr>
<tr>
<td></td>
<td>Лось</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Косули</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Олень благородный</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Доля площади закрепленных охотничьих угодий в общей площади охотничьих угодий субъекта Российской Федерации</td>
<td>%</td>
<td>80</td>
<td>77,5</td>
</tr>
<tr>
<td>3</td>
<td>Доля привлеченных к ответственности лиц за нарушения</td>
<td>%</td>
<td>78,5</td>
<td>97,38</td>
</tr>
<tr>
<td>№ п/п</td>
<td>Целевой показатель</td>
<td>Единица измерения</td>
<td>План 2015</td>
<td>Факт 2015</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>законодательства в области охоты и сохранения охотничьих ресурсов к общему количеству возбужденных дел об административных правонарушениях в области охоты и сохранения охотничьих ресурсов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Продуктивность охотничьих угодий в субъекте Российской Федерации</td>
<td>рублей/ гектар</td>
<td>9,66</td>
<td>10,55</td>
</tr>
<tr>
<td>5</td>
<td>Количество государственных охотничьих инспекторов в муниципальном образовании, на территории которого находятся охотничьи угодья</td>
<td>человек/ район</td>
<td>2</td>
<td>2,44</td>
</tr>
<tr>
<td>6</td>
<td>Отношение количества видов охотничьих ресурсов, по которым ведется учет их численности в рамках государственного мониторинга охотничьих ресурсов и среды их обитания, к общему количеству видов охотничьих ресурсов, обитающих на территории субъекта Российской Федерации</td>
<td>%</td>
<td>60</td>
<td>61,8</td>
</tr>
<tr>
<td>7</td>
<td>Издание документа об утверждении лимита добычи охотничьих ресурсов в срок до 1 августа текущего года</td>
<td>единиц</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Соответствие изданного нормативного правового акта субъекта Российской Федерации об утверждении видов разрешенной охоты и параметров осуществления охоты в охотничьих угодьях на территории субъекта Российской Федерации законодательству Российской Федерации</td>
<td>единиц</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Представление сведений государственного охотхозяйственного реестра в Минприроды России в установленные сроки</td>
<td>единиц</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Водные биологические ресурсы.

Фонд водных объектов рыбхозяйственного значения Самарской области представлен участками Саратовского и Куйбышевского водохранилищ общей площадью акваторий 180,815 тыс. га; малыми водохранилищами – Кутулукским, Ветлянским, Черновским, Кондурчинским и другими общей площадью 7,333 тыс. га; реками общей протяженностью 6742 км; озерами площадью акваторий 1,683 тыс. га; прудами 4,58 тыс. га. На естественных водоемах области ведется любительское рыболовство и промысловая добыча рыбы.

Ихтиофауна рыбохозяйственных водоемов Самарской области представлена более 25 видами рыб – лещ, судак, щука, плотва, чехонь, густера, окунь, сом, карась, жерех, язь, белый амур, толстолобик, уклея, линь, красноперка, берш, налим, сазан, белоглазка, голавль, ерш, бычки, тюлька. Обитает речной рак.
Освоение промышленных квот и объемов добычи (вылова) водных биологических ресурсов рыбодобывающими предприятиями Самарской области за 2015 г.

<table>
<thead>
<tr>
<th>Саратовское водохранилище</th>
<th>Площадь РПУ отведенных по договору, тыс. га</th>
<th>Квоты и объемы добычи (вылова) рыбодобывающих предприятий, тонн</th>
<th>Вылов, тонн</th>
<th>% освоения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Саратовское водохранилище</td>
<td>68,10</td>
<td>551,27</td>
<td>410,108</td>
<td>74,4</td>
</tr>
<tr>
<td>ООО «Волжское»</td>
<td>19,30</td>
<td>195,0</td>
<td>148,926</td>
<td>76,4</td>
</tr>
<tr>
<td>ООО «Сызранский рыбокомбинат-1»</td>
<td>24,20</td>
<td>235,87</td>
<td>164,876</td>
<td>69,9</td>
</tr>
<tr>
<td>РА «Печерская»</td>
<td>19,00</td>
<td>70,0</td>
<td>57,786</td>
<td>82,6</td>
</tr>
<tr>
<td>ООО «Волна»</td>
<td>2,40</td>
<td>22,9</td>
<td>20,159</td>
<td>88,0</td>
</tr>
<tr>
<td>РЗАО «Кинельское»</td>
<td>0,70</td>
<td>10,0</td>
<td>8,083</td>
<td>80,8</td>
</tr>
<tr>
<td>ООО «Самарарыбхоз»</td>
<td>2,00</td>
<td>3,5</td>
<td>2,43</td>
<td>69,4</td>
</tr>
<tr>
<td>ООО "БиоРесурс"</td>
<td>0,50</td>
<td>14,0</td>
<td>7,848</td>
<td>56,0</td>
</tr>
<tr>
<td>Куйбышевское водохранилище</td>
<td>48,30</td>
<td>425,945</td>
<td>361,348</td>
<td>84,8</td>
</tr>
<tr>
<td>ООО «Волжское»</td>
<td>15,00</td>
<td>57,0</td>
<td>47,901</td>
<td>84,0</td>
</tr>
<tr>
<td>ООО «Сызранский рыбокомбинат-1»</td>
<td>16,00</td>
<td>292,145</td>
<td>257,796</td>
<td>88,2</td>
</tr>
<tr>
<td>ООО «Хрящевский рыбец»</td>
<td>8,30</td>
<td>47,0</td>
<td>39,588</td>
<td>82,5</td>
</tr>
<tr>
<td>Санаторий «Волжский утес»</td>
<td>6,50</td>
<td>4,7</td>
<td>2,244</td>
<td>47,7</td>
</tr>
<tr>
<td>ООО "БиоРесурс"</td>
<td>2,50</td>
<td>24,1</td>
<td>13,819</td>
<td>57,3</td>
</tr>
<tr>
<td>Водоемы Заволжья</td>
<td>3,066</td>
<td>17,88</td>
<td>3,95</td>
<td>21,8</td>
</tr>
<tr>
<td>ООиР «Отрада»</td>
<td>2,147</td>
<td>10,88</td>
<td>2,202</td>
<td>20,2</td>
</tr>
<tr>
<td>МУОРП «Волжское»</td>
<td>0,32</td>
<td>5,0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ООО "БиоРесурс"</td>
<td>0,182</td>
<td>0,2</td>
<td>0,2</td>
<td>100,0</td>
</tr>
<tr>
<td>ООО "Оружие снасти"</td>
<td>0,417</td>
<td>1,8</td>
<td>1,503</td>
<td>83,5</td>
</tr>
<tr>
<td>Итого по области</td>
<td>119,466</td>
<td>995,095</td>
<td>775,361</td>
<td>77,9</td>
</tr>
</tbody>
</table>

Формирование и предоставление рыбопромысловых участков (РПУ)

<table>
<thead>
<tr>
<th>Кол-во РПУ</th>
<th>Кол-во РПУ, предоставленных пользователям</th>
<th>Площадь РПУ, предоставленных пользователям, тыс. га</th>
<th>Общая площадь РПУ, тыс. га</th>
</tr>
</thead>
<tbody>
<tr>
<td>промышленное рыболовство</td>
<td>38</td>
<td>33</td>
<td>134,665</td>
</tr>
<tr>
<td>организация любительского и спортивного рыболовства</td>
<td>116</td>
<td>38</td>
<td>4,801</td>
</tr>
<tr>
<td>товарное рыбоводство</td>
<td>3</td>
<td>3</td>
<td>0,058</td>
</tr>
<tr>
<td>ВСЕГО</td>
<td>157</td>
<td>74</td>
<td>139,524</td>
</tr>
</tbody>
</table>
Мероприятия по охране водных биологических ресурсов в 2015 году
(за счет субвенций на исполнение переданных полномочий)

<table>
<thead>
<tr>
<th>Охрана и регулирование использования водных биологических ресурсов</th>
<th>Мероприятия</th>
<th>Сумма, тыс. руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выполнение работ по очистке рыбохозяйственных водоемов от</td>
<td></td>
<td>155,9</td>
</tr>
<tr>
<td>брошенных орудий лова</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Саратовское водохранилище. Площадь акватории при НПУ (28 м БС) в пределах Самарской области – 95 тыс. га или 51,9% от общей площади водохранилища (183 тыс. га).

Промысловый запас ВБР на Саратовском водохранилище складывается из 20 видов: лещ, судак, щука, плотва, густера, окунь, чехонь, сишен, язь, красноперка, карась, берш, линь, жерех, сазан, налим, сом, уклея, толстолобик, речной рак. Однако роль отдельных видов различна. Основу промысловых ВБР составляют первые 13 видов, на долю которых приходится 96,7% запаса.

Формирование их запасов имеет во многом сходные закономерности, зависящие от структуры стада, условий размножения и нагула. Основные промысловые виды рыб водохранилища являются фитофильными, т.е. для их успешного размножения необходима залитая водой, вегетирующая или отмершая растительность и поддержание уровня воды на высоких отметках до выклева личинок и их перехода на активное питание.

При существующем гидрологическом режиме водохранилища воздействию паводковых вод подвержена огромная территория пойменных участков, особенно пойм притоков. В последние годы в период весеннего паводка уровень воды в районе г. Самара не превышает 32 м БС. Затапливаются нерестовые участки пойм с различным субстратом, используемым фитофильной группой весенне-нерестующих рыб. Наиболее благоприятны для нереста мелководные участки с глубинами до 2 м. Существует тесная связь урожайности поколений рыб и площади затопленной поймы в период нереста. В маловодные годы площадь водохранилища во время весеннего паводка увеличивается на 36 тыс. га, а в многоводные – на 60 тыс. га. По обобщенным данным высокоурожайные поколения фитофильных рыб наблюдаются в годы с уровнем весеннего паводка более 31 м.

Кроме того, фактором, оказывающим влияние на естественное воспроизводство рыб, является и изменение естественного температурного режима. В мелководных заливах водные массы прогреваются гораздо быстрее, чем в открытой зоне. Разность температур обычно бывает в пределах 8-12°. Вследствие колебания уровня воды отмечается поступление на мелководные нерестилища вод с более низкой температурой. В результате складываются неблагоприятные условия не только для нереста рыб (нерест может прерваться), но и для эмбрионального развития икры.

Немаловажное значение имеют и качественные характеристики мелководий, используемые в качестве нерестилищ. За 48 лет существования водохранилища его мелководные участки в значительной степени покрылись высшей водной растительностью. Она, произраста на мелководьях непрерывным поясом, образует непреодолимый барьер на путях миграций рыб к местам нереста. Требуются масштабные мелиоративные работы по выкосу высшей водной растительности.

По водности 2015 год был маловодным. Подъем уровня воды отмечен с 25 апреля и к 5 мая достиг всего 30,08 м БС (по М.С. г. Самара), что ниже среднего по водности года.
на 2 м. В результате более 30 тыс. га пойменных нерестовых участков не были заливы водой.

С 3 мая продолжительность стояния воды на отметках 29,9-29,7 м БС отмечена в течение 22 дней.

Благодаря относительно стабильному уровню воды в течение 22 дней (с колебаниями в пределах 20 см) и прогреву воды до нерестовых температур, по условиям размножения рыб 2015 год можно считать среднеурожайным.

Это подтверждает и результат мальковой съемки (данные Саратовского ГосНИОРХ). Общая численность молоди рыб на 1 га съемки составила 36000 экз./га, из них молоди промысловых рыб - 21000 экз./га.

Уровень воды на Саратовском водохранилище в зимний период превышал НПУ 28 м БС и держался на отметке 28,0 – 28,36 м. Зимовка ВБР прошла удовлетворительно. Заморные явления не отмечены. На отдельных мелководных участках заливов содержание растворенного в воде кислорода не опускалось ниже 3,8 мг/л.

На всей акватории Саратовского водохранилища в пределах Самарской области, ведется круглогодичный любительский лов рыбы. Промышленный лов ведется рыбодобывающими организациями на отведенных РПУ (рыбопромысловых участках) на площади акватории 68,47 тыс. га и на 72% от общей площади водохранилища в пределах Самарской области (95 тыс. га).

В 2015 году общий допустимый улов (ОДУ) и возможный улов (ВУ) всех ВБР в пределах Самарской области был установлен (по обоснованию рыбохозяйственной науки) в объеме 1469 т, освоено по всем видам пользования 28% (табл. 4.6.9).

Таблица 4.6.9

<table>
<thead>
<tr>
<th>Рыболовство в научно-исследовательских и контрольных целях</th>
<th>Промышленное рыболовство</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>квоты и объемы вылова</td>
<td>% освоен</td>
<td>квоты и объемы вылова</td>
</tr>
<tr>
<td>Стерлядь</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Сазан</td>
<td>0,02</td>
<td>0,004</td>
</tr>
<tr>
<td>Лещ</td>
<td>6,1</td>
<td>1,043</td>
</tr>
<tr>
<td>Судак</td>
<td>0,175</td>
<td>0,091</td>
</tr>
<tr>
<td>Шука</td>
<td>0,065</td>
<td>0,004</td>
</tr>
<tr>
<td>Сом</td>
<td>0,08</td>
<td>0,002</td>
</tr>
<tr>
<td>Раки</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>Плотва</td>
<td>0,045</td>
<td>0,013</td>
</tr>
<tr>
<td>Карась</td>
<td>0,01</td>
<td>-</td>
</tr>
<tr>
<td>Жерех</td>
<td>0,085</td>
<td>0,005</td>
</tr>
<tr>
<td>Язь</td>
<td>0,08</td>
<td>0,006</td>
</tr>
<tr>
<td>Чехонь</td>
<td>0,045</td>
<td>0,005</td>
</tr>
<tr>
<td>Синец</td>
<td>0,045</td>
<td>-</td>
</tr>
<tr>
<td>Бел. амур</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Толстолобик</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Густера</td>
<td>0,725</td>
<td>0,048</td>
</tr>
<tr>
<td>Елец</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Белоглазка</td>
<td>0,03</td>
<td>-</td>
</tr>
<tr>
<td>Голавль</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Уклея</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Линь</td>
<td>0,04</td>
<td>-</td>
</tr>
<tr>
<td>Красноперка</td>
<td>0,02</td>
<td>-</td>
</tr>
</tbody>
</table>
Рыболовство в научно-исследовательских и контрольных целях

Промышленное рыболовство

Всего

<table>
<thead>
<tr>
<th></th>
<th>квоты и объ-емы вылова</th>
<th>вылов</th>
<th>% освоен</th>
<th>квоты и объ-емы вылова</th>
<th>вылов</th>
<th>% освоен</th>
<th>квоты и объ-емы вылова</th>
<th>вылов</th>
<th>% освоен</th>
</tr>
</thead>
<tbody>
<tr>
<td>Окунь</td>
<td>0,025</td>
<td>0,005</td>
<td>20</td>
<td>139,975</td>
<td>32,529</td>
<td>23,2</td>
<td>140</td>
<td>32,534</td>
<td>23,2</td>
</tr>
<tr>
<td>Берш</td>
<td>0,045</td>
<td>0,009</td>
<td>20</td>
<td>34,955</td>
<td>5,478</td>
<td>15,7</td>
<td>35</td>
<td>5,487</td>
<td>15,7</td>
</tr>
<tr>
<td>Ерш</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Налим</td>
<td>0,04</td>
<td>0,004</td>
<td>10</td>
<td>11,96</td>
<td>1,46</td>
<td>12,2</td>
<td>12</td>
<td>1,464</td>
<td>12,2</td>
</tr>
<tr>
<td>Бычки</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Итого</td>
<td>7,725</td>
<td>1,239</td>
<td>16</td>
<td>1461,275</td>
<td>410,108</td>
<td>28,1</td>
<td>1469</td>
<td>411,347</td>
<td>28</td>
</tr>
</tbody>
</table>

Однако в показателях освоения не учтен вылов рыболовами-любителями. Ихтиологами Самарского отдела ФГБУ «Средневолжрыбвод» в 2015 году были собраны данные опросов рыболовов-любителей и зафиксированы сведения об их уловах (видовой, количественный, весовой состав по участкам лова, сезонам года, зонам водохранилища). Все обработанные данные были предоставлены Саратовскому отделению ФГБНУ «ГосНИОРХ» для оценки посещаемости Саратовского водохранилища рыболовами-любителями и общего годового вылова ВБР этой категории. По расчетным данным вылов рыболовами-любителями составил в 2015 году 1211 тонн. Лещ составил 450,7 т; судак 119,7 т; щука 87,5; жерех 93,7 т; окунь 211,4 т; плотва 110,9 т; карась 16,7 т (табл. 4.6.10).

Таблица 4.6.10

<table>
<thead>
<tr>
<th>Виды рыб</th>
<th>Улов, т</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Подледный лов</td>
</tr>
<tr>
<td></td>
<td>с лодки</td>
</tr>
<tr>
<td>Лещ</td>
<td>18.8</td>
</tr>
<tr>
<td>Судак</td>
<td>24.7</td>
</tr>
<tr>
<td>Щука</td>
<td>5.2</td>
</tr>
<tr>
<td>Сом</td>
<td>-</td>
</tr>
<tr>
<td>Сазан</td>
<td>-</td>
</tr>
<tr>
<td>Сициц</td>
<td>1.0</td>
</tr>
<tr>
<td>Жерех</td>
<td>-</td>
</tr>
<tr>
<td>Густера</td>
<td>34.8</td>
</tr>
<tr>
<td>Плотва</td>
<td>51.9</td>
</tr>
<tr>
<td>Берш</td>
<td>0.2</td>
</tr>
<tr>
<td>Налим</td>
<td>6.7</td>
</tr>
<tr>
<td>Голавль</td>
<td>0.7</td>
</tr>
<tr>
<td>Окунь</td>
<td>81.3</td>
</tr>
<tr>
<td>Карась</td>
<td>-</td>
</tr>
<tr>
<td>Ерш</td>
<td>1.7</td>
</tr>
<tr>
<td>Язь</td>
<td>-</td>
</tr>
<tr>
<td>Чехонь</td>
<td>-</td>
</tr>
<tr>
<td>Уклея</td>
<td>6.4</td>
</tr>
<tr>
<td>Красноперка</td>
<td>13.6</td>
</tr>
<tr>
<td>Белоглазка</td>
<td>-</td>
</tr>
<tr>
<td>Бычки</td>
<td>-</td>
</tr>
<tr>
<td>Всего</td>
<td>247.0</td>
</tr>
</tbody>
</table>
Лещ по-прежнему является доминирующим видом. Существенных изменений в распределении леща в последние годы (2009-2015 гг.) не наблюдается. Как правило, более высокие концентрации его сохраняются в районах, прилегающих к островам, пойменным и устьевым участкам рек. Популяция леща состоит из 17-ти возрастных групп, доминируют трех-восьмилетки, доля которых по численности около 90%.

ОДУ леща в 2015 году установлен в объеме 516 т, освоено по всем видам пользования 31,5% (без учета любительского рыболовства). В сравнении с 2014 годом вылов леща на водохранилище в пределах Самарской области вырос на 18,9 т. (табл. 4.6.9).

Судак. Динамика численности судака, так же как и леща за последние годы не претерпела существенных изменений.

В условиях Саратовского водохранилища судак является относительно малочисленным видом, несмотря на наличие благоприятных условий воспроизводства, достаточно высокую численность рыб-жертв (плотвы, бычков, тюльки, чехони), составляющих основу его питания. Основной причиной, сдерживающей рост его численности, является количество производителей судака. Популяция судака представлена 14-ю возрастными группами. Основу численности в истекшем году составили трех – шестилетки, на долю которых приходится 90% численности учтенной части стада. Общий допустимый улов судака в 2015 году в Самарской области был определен в 85 т, освоено 12,9% (без учета любительского рыболовства, табл.4.6.10). Вылов судака в 2015 году составил 16,892 т, что на 2,2 т выше вылова в 2014 году.

Щука – быстрорастущий хищник, потребляющий малоценные виды рыб, преимущественно в прибрежной, мелководной зоне.

В промысловых уловах щука представлена 14 возрастными группами. Доминируют трех – восьмилетки. Щука растет быстро. На Саратовском водохранилище в возрасте 5-6 лет она достигает массы 1 кг и более. Условия нагула ее в водохранилище благоприятны, темпы роста значительно выше по сравнению с речным периодом. ОДУ щуки в пределах Самарской области в 2015 году определен в 40 т, освоено 36,9% (без учета любительского рыболовства, табл.4.6.9).

Сом. В 2015 году доля сома в уловах по всем видам пользования составила всего 0,28%. Популяция состоит из особей до 14 лет, в том числе наиболее многочисленны 7-11 летки. ОДУ сома в 2015 году определен в 6 т, освоено 19,4% (1,161 т).

ОДУ других крупночастиковых рыб определен в 76 т, из них жерех 17 т, освоено 11,3%; язь 30 т, освоено 25,4%; толстолобик 5 т, освоено 1,4%; белый амур 4 т, не осваивался; налим 12 т, освоено 12,2% (табл.4.6.9).

Мелкий частик на водохранилище представлен 12 видами рыб. Наукой определен возможный улов (ВУ) в 728 т. Промыслом использовались 10 видов рыб. Вылов их составил 194,446 т или 26,7% от ВУ (таблица 4.6.11). Мелкий частик составляет основу уловов мелкоковейных ставных сетей и закидных неводов на всех участках водохранилища с глубинами до 5 м. Запасы мелкого частика не претерпевают существенных изменений.

Вылов рыбы в 2011-2015 г.г. по Саратовскому водохранилищу (промышленное рыболовство), тн

<table>
<thead>
<tr>
<th>Виды рыб</th>
<th>2011 год</th>
<th>2012 год</th>
<th>2013 год</th>
<th>2014 год</th>
<th>2015 год</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лещ</td>
<td>243,062</td>
<td>248,991</td>
<td>245,184</td>
<td>180,939</td>
<td>204,814</td>
</tr>
<tr>
<td>Судак</td>
<td>15,975</td>
<td>18,792</td>
<td>16,81</td>
<td>14,664</td>
<td>16,801</td>
</tr>
<tr>
<td>Щука</td>
<td>12,66</td>
<td>12,059</td>
<td>14,796</td>
<td>11,791</td>
<td>14,748</td>
</tr>
<tr>
<td>Жерех</td>
<td>2,726</td>
<td>2,119</td>
<td>2,568</td>
<td>1,616</td>
<td>1,875</td>
</tr>
<tr>
<td>Язь</td>
<td>7,866</td>
<td>8,328</td>
<td>8,58</td>
<td>8,396</td>
<td>7,623</td>
</tr>
<tr>
<td>Сом</td>
<td>2,361</td>
<td>2,029</td>
<td>1,179</td>
<td>1,098</td>
<td>1,159</td>
</tr>
</tbody>
</table>

Таблица 4.6.11
Речной рак. Раки – ценные промысловые организмы и являются единственными пищевыми беспозвоночными естественных водоемов нашего региона. Рак очень чувствителен к неблагоприятным факторам среды обитания. Начиная с 90-х годов прошлого столетия экологические условия улучшились, благодаря уменьшению использования удобрений и пестицидов в сельском хозяйстве.

Промысловые концентрации рака в настоящее время имеются в левобережье водохранилища – в Самарской, Чапаевской и Безенчукской поймах, а также в заливе Чагра. Как правило, ракопромысловые районы – заливы с низкими берегами, хорошо развитой надводной растительностью, образующей пояс у берегов, островов и мелей, с преобладанием в ней тростника обыкновенного. Дно, чаще всего заиленная глина, покрытая ковром погруженной растительности. Средняя глубина водоемов – от 1,5 до 5 м. Максимальные глубины проходят по бывшим руслам рек и достигают 10 м. Общий допустимый улов речного рака в 2015 году определен в 12 т, освоено 78,2% (табл. № 4.6.9).

Стерлядь. Осетровые рыбы являются национальным богатством России. До начала бурного развития гидроэнергетики по их уловам наша страна занимала первое место в мире. Среди всех рек по добыче проходных осетровых и стерляди Волга занимала особое место. Возведение каскада плотин, в том числе в районе г. Волгограда (1958 г.) и г. Балаково (1968 г.) коренным образом изменило гидрологический режим реки. Это привело сначала к потере проходных осетровых, а затем и снижению численности туводного вида – стерляди. Однако, благодаря своей экологической пластичности, в условиях волжских водохранилищ стерлядь смогла приспособиться к новым гидрологическим условиям и выжила. В верхних зонах водохранилищ сохранилась часть нерестилищ и ее естественное воспроизводство.

В водохранилищных условиях воспроизводство стерляди ухудшилось из-за резкого сокращения площади естественных нерестилищ и нарушения нормального гидрологического режима. Естественное воспроизводство сохранилось только на участке
от Жигулевской ГЭС до г. Октябрьска. Повышенная проточность и наличие кормовой базы потенциально способствует успешному обитанию стерляди по всей русловой части водохранилища. Отмечаемая в настоящее время низкая эффективность естественного воспроизводства стерляди объясняется, наряду с сокращением площади нерестов, ограниченным количеством производителей и их замедленным темпом созревания. Поэтому, основой существенного увеличения запасов стерляди в водохранилище является расширение масштабов искусственного воспроизводства с целью увеличения нерестового стада, а также сохранения эффективности естественного воспроизводства и введение ряда охранных мер. Для полного использования сохранившихся нерестов, необходимо увеличение общих запасов стерляди до 300 – 350 т. Этого можно добиться при ежегодном выпуске до 2 - 3 млн. шт. подрессированной молоди стерляди, в течение 10 - 15 лет.

В настоящее время популяция стерляди водохранилища, кроме естественного воспроизводства, пополняется за счет выпуска молоди плавучим рыбоводным заводом (ПРВЗ-019) ФГБУ «Средневолжрыбвод». Благодаря его деятельности в Саратовское водохранилище ежегодно выпускается 600 тыс. экземпляров подрессированной молоди стерляди. Промысловый возврат составляет 1,9% от выпуска. Деятельность этого предприятия является весьма важной, его целевое назначение должно быть сохранено.

В 2014 году был пущен в эксплуатацию рыбозавод по выращиванию молоди стерляди в «Свято-Богородичном Казанском мужском монастыре» в с. Винновка Ставропольского района Самарской области. Этот цех вырастил и выпустил в 2015 году в русло водохранилища в р-не с. Винновка 127,6 тыс. штук молоди стерляди в счет компенсационных мероприятий. Сохранявшиеся нерестовые участки стерляди по правобережью водохранилища от г. Жигулевск вниз до г. Октябрьск внесены в «перечень нерестовых участков, расположенных на водных объектах рыбозаводного значения Волжско-Каспийского рыбозаводного значения», утвержденных Приказом Минсельхоза от 18.11.14 г. № 453.

Куйбышевское водохранилище. При НПУ (53 м БС) площадь акватории в пределах Самарской области – 85,815 тыс. га, что составляет 14,7% от общей площади водохранилища.

В пределах Самарской области находится акватория приплотинного плеса Куйбышевского водохранилища. Здесь круглогодично, исключая запретный нерестовый период, ведется промышленный и любительский лов рыбы. Из 85,115 тыс. га – рыбопромысловые участки (РПУ) площадью 63,9 тыс. га выделены под промысловое рыболовство. Состав ихтиофауны сходен с Саратовским водохранилищем. Основными промысловыми видами являются лещ, судак, берш, плотва, густера, окунь, чехонь, синец, карась, их доля в общем вылове составляет 98,4% (2015г.).

Общий допустимый улов (ОДУ) и возможный улов (ВУ) всех водных биоресурсов в пределах Самарской области в 2015 году были установлены в объеме 684,7 тонн. Доля леща составила 30,4%, плотвы - 21,3%, густеры – 11,9%, синца – 6%, окуня - 6%, карася - 4,4%, чехони - 5,7%. Доля судака, щуки, сома, сазана всего 5,84%. Выделенные объемы вылова в 684,7 т, освоены на 52,8% (табл. № 4.6.12).

Вылов ВБР за последние годы на Куйбышевском водохранилище представлен в таблице 4.6.12.

Лещ является основным промысловым видом на водохранилище, доля его в общем объеме вылова в 2015 году составила 49,7%. Уловы леща по годам колеблются от 50,17 т в 2004 г. до 179,623 т в 2015 г (табл. № 4.6.13).

Условия воспроизводства леща и других фитофильных рыб достаточно благоприятны (лишь один год из пяти является маловодным). Условия нагула практически всех рыб нормальные, поэтому темп их роста вполне удовлетворителен.
<table>
<thead>
<tr>
<th>№</th>
<th>Рыба</th>
<th>Квоты и объемы вылова</th>
<th>Вылов</th>
<th>% освоен</th>
<th>Квоты и объемы вылова</th>
<th>Вылов</th>
<th>% освоен</th>
<th>Квота и объемы вылова</th>
<th>Вылов</th>
<th>% освоен</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Стерлядь</td>
<td>0,1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Сазан</td>
<td>0,125</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Лещ</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Судак</td>
<td>0,025</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Щука</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Сом</td>
<td>0,05</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Раки</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Плотва</td>
<td>0,115</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Карась</td>
<td>0,1</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Жерех</td>
<td>0,015</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Язь</td>
<td>0,009</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Чехонь</td>
<td>0,015</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Синец</td>
<td>0,11</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Бел. амур</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Толстолобик</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Густера</td>
<td>0,225</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Белоглазка</td>
<td>0,01</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Уклея</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Линь</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Красноперка</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Окунь</td>
<td>0,015</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Берш</td>
<td>0,015</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Налим</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Тюлька</td>
<td>0,11</td>
<td>-</td>
</tr>
<tr>
<td>Итого</td>
<td></td>
<td>1,539</td>
<td>-</td>
</tr>
</tbody>
</table>
Щука в водохранилище малочисленна. Вылов в 2015 году составил всего 0,579 т. Ограниченное количество производителей даже в многоводные годы не дает мощных поколений (табл. 4.6.13).

В связи с сокращением запасов щуки в нижней зоне водохранилища, судак в настоящее время является основным хищником-мелиоратором, способным, при увеличении своей численности, сдерживать нарастание запасов малоценных видов рыб. ОДУ на судака в 2015 г определен в объеме 30,4 т, освоено 44,7%. Доля судака в общем объеме вылова – 3,76%. Общий вылов составил 13,595 т (табл.4.6.13). Условия для воспроизводства судака в водохранилище благоприятные (размножается на открытых участках, где откладывает икру на таких глубинах, где весенняя сработка не может отрицательно сказаться на ее развитии, кроме как в маловодные годы). Однако, несмотря на появление большого количества молоди в отдельные годы, эффективность размножения судака резко снижается в результате гибели сеголеток при сильном цветении воды в жаркий летний период, обусловленном развитием синезеленых водорослей.

Общие запасы мелкочастиковых рыб в приплотинном плесе водохранилища относительно стабильны. За последние 10 лет промысловые уловы колеблются в пределах 107-165 тонн в зависимости от урожайности поколений (табл. 4.6.13).

В 2015 году общий объем выловленных мелкочастиковых рыб составил 165,689 т. Доминирующими были: густера 30,4%; плотва 19%; чехонь 19%; карась 9,5%; окунь 9,7% (табл. 4.6.13).

Любительское рыболовство не учитывалось.

Водоемы Самарского Заволжья. Водоемы Заволжья – это озера и малые водохранилища, где ведется как промышленное, так и организованное любительское рыболовство. В 2015 году промышленное рыболовство осуществляется на РПУ площадью 3,066 тыс. га – Кутулукское водохранилище и озера Безенчукского района.

Любительское рыболовство на РПУ общей площадью 2,75 тыс. га – это малые водохранилища и пруды. Общий допустимый улов и возможный улов (ОДУ и ВУ) в 2015 году был определен в размере 145 тонн. Освоено 34,568 т (23,8%), из них: организованное любительское рыболовство – 30,663 т, промышленное – 3,905 т (табл. 4.6.14).

Рыболовством охвачены 11 видов ВБР. Доминирующими видами являются: карась – 30,5%; плотва – 15,4%; окунь – 14,9%; сазан (карп) – 9,1%; густера – 8,38%; раки – 7,67%; щука – 9,65% (табл. 4.6.14).

В таблице 4.6.15 приводятся данные промышленной добычи рыбы на водоемах Самарского Заволжья за период 2006-2015 гг. Таблица 4.6.13
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.247</td>
<td>1.009</td>
<td>1.225</td>
<td>1.865</td>
<td>1.226</td>
<td>1.582</td>
<td>2.116</td>
<td>3.12</td>
<td>2.073</td>
<td>1.796</td>
<td>1.244</td>
<td>0.002</td>
<td>0.002</td>
<td>-</td>
<td>193,28</td>
</tr>
<tr>
<td>8.</td>
<td>-</td>
<td>186,12</td>
</tr>
<tr>
<td>9.</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
<td>-</td>
<td>210,682</td>
</tr>
<tr>
<td>10.</td>
<td>-</td>
<td>-</td>
<td>126,92</td>
<td>126,803</td>
<td>105,707</td>
<td>113,371</td>
<td>103,457</td>
<td>139,321</td>
<td>151,944</td>
<td>128,803</td>
<td>165,689</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>-</td>
<td>-</td>
<td>126,92</td>
<td>126,803</td>
<td>105,707</td>
<td>113,371</td>
<td>103,457</td>
<td>139,321</td>
<td>151,944</td>
<td>128,803</td>
<td>165,689</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>44.425</td>
<td>35.35</td>
<td>43.604</td>
<td>41.57</td>
<td>34.641</td>
<td>32.154</td>
<td>25.071</td>
<td>33.677</td>
<td>36.783</td>
<td>26.067</td>
<td>31.492</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>4.864</td>
<td>4.515</td>
<td>3.018</td>
<td>2.763</td>
<td>0.495</td>
<td>5.294</td>
<td>5.132</td>
<td>5.561</td>
<td>1.971</td>
<td>0.234</td>
<td>3.425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.053</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>193,28</td>
<td>186,12</td>
<td>210,682</td>
<td>214,83</td>
<td>210,097</td>
<td>275,481</td>
<td>248,147</td>
<td>321,791</td>
<td>297,71</td>
<td>319,455</td>
<td>361,348</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номер</td>
<td>Рыбный вид</td>
<td>Рыболовство в научно-исследовательских и контрольных целях</td>
<td>Любительское и спортивное рыболовство</td>
<td>Промышленное рыболовство</td>
<td>Всего</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>квоты и объемы вылова</td>
<td>% освоен</td>
<td>квоты и объемы вылова</td>
<td>% освоен</td>
<td>квоты и объемы вылова</td>
<td>% освоен</td>
<td>% освоен</td>
<td>квоты и объемы вылова</td>
<td>% освоен</td>
<td>% освоен</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Стерлядь</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Сазан</td>
<td>0,05</td>
<td>-</td>
<td>5</td>
<td>2,708</td>
<td>54,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>3,159</td>
<td>31,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Лещ</td>
<td>0,05</td>
<td>-</td>
<td>3</td>
<td>0,5</td>
<td>16,7</td>
<td>3,95</td>
<td>0,296</td>
<td>7,5</td>
<td>7</td>
<td>0,796</td>
<td>11,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Судак</td>
<td>0,05</td>
<td>-</td>
<td>1</td>
<td>1,95</td>
<td>0,207</td>
<td>3,95</td>
<td>0,296</td>
<td>7,5</td>
<td>3</td>
<td>0,207</td>
<td>6,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Щука</td>
<td>0,03</td>
<td>-</td>
<td>8</td>
<td>2,92</td>
<td>36,5</td>
<td>2,97</td>
<td>0,418</td>
<td>14</td>
<td>11</td>
<td>3,338</td>
<td>30,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Сом</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Раки</td>
<td>0,02</td>
<td>-</td>
<td>5</td>
<td>2,22</td>
<td>44,4</td>
<td>0,98</td>
<td>0,431</td>
<td>44</td>
<td>6</td>
<td>2,651</td>
<td>44,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Плотва</td>
<td>0,05</td>
<td>-</td>
<td>8,5</td>
<td>5,1</td>
<td>60</td>
<td>15,45</td>
<td>0,226</td>
<td>1,5</td>
<td>24</td>
<td>5,326</td>
<td>22,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Карась</td>
<td>0,02</td>
<td>-</td>
<td>14,9</td>
<td>9,265</td>
<td>62,2</td>
<td>35,08</td>
<td>1,276</td>
<td>3,6</td>
<td>50</td>
<td>10,541</td>
<td>21,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Жерех</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Язь</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Чехонь</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Синец</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Бел. амур</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Толстолобик</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Густера</td>
<td>0,05</td>
<td>-</td>
<td>3,4</td>
<td>2,8</td>
<td>82,4</td>
<td>6,55</td>
<td>0,097</td>
<td>1,5</td>
<td>10</td>
<td>2,897</td>
<td>28,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Белоглазка</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Уклея</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Линь</td>
<td>-</td>
<td>-</td>
<td>0,4</td>
<td>0,3</td>
<td>75</td>
<td>0,6</td>
<td>0,1</td>
<td>16,7</td>
<td>1</td>
<td>0,4</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Красноперка</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Окунь</td>
<td>0,06</td>
<td>-</td>
<td>8,2</td>
<td>4,85</td>
<td>59,1</td>
<td>12,74</td>
<td>0,317</td>
<td>2,5</td>
<td>21</td>
<td>5,167</td>
<td>24,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Берш</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Налим</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Тюлька</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого</td>
<td>0,38</td>
<td>-</td>
<td>57,4</td>
<td>30,663</td>
<td>53,4</td>
<td>87,22</td>
<td>3,905</td>
<td>4,5</td>
<td>145</td>
<td>34,568</td>
<td>23,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сазан</td>
<td>3,95</td>
<td>3,094</td>
<td>2,919</td>
<td>2,445</td>
<td>1,473</td>
<td>1,533</td>
<td>1,724</td>
<td>1,703</td>
<td>1,44</td>
<td>0,451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лещ</td>
<td>2,9</td>
<td>2,152</td>
<td>2,923</td>
<td>1,762</td>
<td>1,381</td>
<td>1,567</td>
<td>1,596</td>
<td>2,599</td>
<td>1,425</td>
<td>0,296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Судак</td>
<td>1,95</td>
<td>1,743</td>
<td>2,716</td>
<td>1,943</td>
<td>0,995</td>
<td>1,055</td>
<td>0,996</td>
<td>1,02</td>
<td>0,925</td>
<td>0,207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Щука</td>
<td>1,1</td>
<td>1,001</td>
<td>1,53</td>
<td>0,3</td>
<td>0,534</td>
<td>0,768</td>
<td>0,814</td>
<td>0,482</td>
<td>0,418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сом</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,451</td>
<td>0,451</td>
<td>0,451</td>
<td>0,451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Раки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,976</td>
<td></td>
<td></td>
<td></td>
<td>0,431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Плотва</td>
<td>3,87</td>
<td>2,002</td>
<td>2,208</td>
<td>1,5</td>
<td>1,044</td>
<td>1,052</td>
<td>1,09</td>
<td>1,09</td>
<td>0,91</td>
<td>0,226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Карась</td>
<td>13,96</td>
<td>6,562</td>
<td>9,965</td>
<td>6,73</td>
<td>2,118</td>
<td>4,46</td>
<td>6,584</td>
<td>6,458</td>
<td>2,558</td>
<td>1,276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Жерех</td>
<td></td>
</tr>
<tr>
<td>Йзь</td>
<td>0,5</td>
<td>0,37</td>
<td>0,768</td>
<td>0,5</td>
<td>0,455</td>
<td></td>
<td>0,485</td>
<td>0,498</td>
<td>0,483</td>
<td>0,086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Чехонь</td>
<td></td>
</tr>
<tr>
<td>Синец</td>
<td></td>
</tr>
<tr>
<td>Бел. амур</td>
<td></td>
</tr>
<tr>
<td>Толстолобик</td>
<td></td>
</tr>
<tr>
<td>Густроа</td>
<td>0,747</td>
<td>0,572</td>
<td>1,309</td>
<td>0,714</td>
<td>0,91</td>
<td>1,064</td>
<td>0,988</td>
<td>0,996</td>
<td>0,89</td>
<td>0,097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Белоглазка</td>
<td></td>
</tr>
<tr>
<td>Урюп</td>
<td></td>
</tr>
<tr>
<td>Линь</td>
<td>1</td>
<td>0,151</td>
<td>0,533</td>
<td>0,1</td>
<td>0,06</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Красноперка</td>
<td></td>
</tr>
<tr>
<td>Окунь</td>
<td>2,49</td>
<td>1,347</td>
<td>1,854</td>
<td>0,917</td>
<td>0,979</td>
<td>0,57</td>
<td>1,091</td>
<td>1,109</td>
<td>0,96</td>
<td>0,317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Берш</td>
<td></td>
</tr>
<tr>
<td>Налим</td>
<td></td>
</tr>
<tr>
<td>Тюлька</td>
<td></td>
</tr>
<tr>
<td>Итого</td>
<td>32,467</td>
<td>21,166</td>
<td>28,701</td>
<td>18,801</td>
<td>11,067</td>
<td>12,405</td>
<td>16,319</td>
<td>18,144</td>
<td>11,173</td>
<td>3,905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Раздел 5.
PРИРОДОПОЛЬЗОВАНИЕ И ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ НА ТЕРРИТОРИИ ОТДЕЛЬНЫХ МУНИЦИПАЛЬНЫХ ОБРАЗОВАНИЙ

5.1. Городские округа

5.1.1. Городской округ Самара

Городской округ Самара – крупнейший промышленный центр Среднего Поволжья (авиакосмическая и др. отрасли машиностроения, нефтеперерабатывающая промышленность, энергетика, строительная индустрия, пищевая промышленность и др.), административно-территориальный и культурный центр, крупный транспортный узел.

Территория г.о. Самара – 541,94 км². Численность населения городского округа (на 01.01.2016 г.) – 1170,91 тыс. человек.

На территории городского округа в 2015 году количество зарегистрированного автотранспорта составило 452,715 тыс. единиц, в том числе легкового – 388,305 тыс. единиц, грузового – 49,746 тыс. единиц, автобусов – 14,664 тыс. единиц.

Данные о негативном воздействии на окружающую среду г.о. Самара представлены в таблице 5.1.1.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.1.1

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>23,745</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>23</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, всего, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>332,44</td>
</tr>
<tr>
<td>4. Использовано свежей воды, всего</td>
<td></td>
<td>307,49</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты, всего:</td>
<td></td>
<td>293,96</td>
</tr>
<tr>
<td>в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>187,49</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>1239,522</td>
</tr>
</tbody>
</table>

Динамика выбросов в атмосферу за период 2011 – 2015 годов от стационарных источников представлена на диаграмме 5.1.1.1.

Основные мероприятия природоохранных назначения в 2015 году – ликвидированы 34 выявленных несанкционированных свалок общей площадью 5,61 га, с которых вывезено на полигоны 33745 тонн отходов; приобретено 88 контейнеров, 2 единицы мусоровозов (МБС-3401, МКЗ-3402); очищена территория водоохранных зон

*) – здесь и далее приводятся данные, предоставленные администрациями соответствующих муниципальных образований
**) – здесь и далее по муниципальным образованиям приводится численность постоянного населения на 01.01.2016 года по данным Самарастат
*****) – здесь и далее по муниципальным образованиям показатели водопотребления и водоотведения - данные Нижне-Волжского бассейнового водного управления Федерального агентства водных ресурсов.
5) – полигоны, осуществляющие прием ТБО
рек площадью 1075,16 тыс. м², вывезено и утилизировано 19,0 тыс. м³ отходов; собрано и утилизировано порядка 14 000 шт. отработанных ртутсодержащих энергосберегающих ламп; отремонтировано 30 контейнерных площадок; из частного жилищного фонда вывезено 462,24 тыс. м³ ТБО и КГО; принято на утилизацию 128,87 тыс.м³ твердых бытовых отходов. Выполнена работа по корректировке генеральной схемы очистки территории городского округа Самара.

5.1.2. Городской округ Тольятти

Городской округ Тольятти – крупный промышленный центр (автомобиленстроение, энергетическое и др. отрасли машиностроения, химия и нефтехимия, теплоэнергетика, пищевая промышленность, производство стройматериалов), второй по численности населения и экономическому развитию город в области – в нем насчитывается около 120 крупных и средних промышленных предприятий и организаций. Территория г.о. Тольятти 314,79 км². Численность населения городского округа (на 01.01.2016 г.) – 712,619 тыс. человек.

На территории городского округа в 2015 году количество зарегистрированного автотранспорта составило 287,042 тыс. единиц.

Данные о негативном воздействии на окружающую среду г.о. Тольятти представлены в таблице 5.1.2.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.2.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>31,878</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>Единиц</td>
<td>6</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>145,63</td>
</tr>
<tr>
<td>4. Использовано свежей воды, всего</td>
<td></td>
<td>176,88</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>45,53</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*)</td>
<td>единиц</td>
<td>4</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего**)</td>
<td>тыс. т</td>
<td>207,414</td>
</tr>
</tbody>
</table>

В 2015 году за счет средств бюджета городского округа Тольятти реализовано мероприятие по ликвидации несанкционированных свалок. Всего ликвидировано 13 свалок на площади 5,395 га общим объемом 2870 м³; установлено 30 запрещающих знаков в местах образования несанкционированных свалок. разработан и откорректирован рабочий проект на «Строительство канализационных очистных сооружений смешанного

*) - разбивка по категориям транспортных средств РЭО ГИБДД МУ МВД России по г.о. Тольятти не предоставлена.

**) – здесь и далее указан объем ТБО и промотходов 4 и 5 классов опасности
потока сточных вод предприятий Северного промзала (СПУ) г. Тольятти в районе регулирующей емкости», получено положительное заключение Роспотребнадзора по проекту расчетной санитарно-защитной зоны.

5.1.3. Городской округ Сызрань

Таблица 5.1.3.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>13,335</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>5</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>29,40</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>12,65</td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных</td>
<td>25,59</td>
<td></td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td>23,76</td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>22,69</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>22,69</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидация 43 несанкционированных свалок отходов на площади 25,6 га; продолжение реконструкции очистных сооружений канализации г.о. Сызрань, строительство высоконагруженного полигона захоронения твердых бытовых и производственных отходов; благоустройство и озеленение территории городского округа.
5.1.4. Городской округ Новокуйбышевск

Городской округ Новокуйбышевск — крупный центр нефтеперерабатывающей и нефтехимической промышленности, теплоэнергетики, железнодорожный узел. Территория г.о. Новокуйбышевск — 264,4 км². Население городского округа (на 01.01.2015 г.) — 106,155 тыс. человек.

Данных по количеству зарегистрированного автотранспорта на территории городского округа на 01.01.2016 г. не представлено.

Данные о негативном воздействии на окружающую среду г.о. Новокуйбышевск представлены в таблице 5.1.4.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.4.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>25,993</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>3</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>52,34</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>42,16</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td></td>
<td>50,31</td>
</tr>
<tr>
<td>в том числе загрязненных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*)</td>
<td>единиц</td>
<td>5</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения — всего</td>
<td>тыс. т</td>
<td>107,036</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначений в 2015 году: ликвидировано 28 мест несанкционированного размещения отходов, общей площадью 3,431 га, вывезено на захоронение 5654 тонн отходов; собрано и отправлено на демеркуризацию 160 ртутных ламп, 198 — энергосберегающих ламп и 16 ртутных термометров, на 5 контейнерных площадках города с помощью веткоизмельчителя было переработано в опилки более 4 000 новогодних елок.

5.1.5. Городской округ Чапаевск

Городской округ Чапаевск — промышленный центр на территории области (основные отрасли – машиностроение, химическая и фармацевтическая промышленности, производство строительных материалов), железнодорожный узел. Территория г.о. Чапаевск — 200,5 км². Население городского округа (на 01.01.2016 г.) — 72,933 тыс. человек.

На территории городского округа в 2015 году количество зарегистрированного автотранспорта составило 44,695 тыс. единиц, в том числе легкового — 34,844 тыс. единиц, грузового — 6,536 тыс. единиц, автобусов — 1,201 тыс. единиц, прочее – 2,114 единиц.

Данные о негативном воздействии на окружающую среду г.о. Чапаевск представлены в таблице 5.1.5.1. Показатели таблицы составлены на основании данных статистической отчетности.
Таблица 5.1.5.1

Данные о негативном воздействии на окружающую среду г.о. Чапаевск за 2015 год

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>1,268</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>7,59</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>4,47</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>тыс. т</td>
<td>6,685</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>668,054</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначений в 2015 году: ликвидировано 17 несанкционированных свалок отходов на территории 1,01 га, вывезено 887 тонны отходов; получено положительное экспертное заключение ФАУ «Главгосэкспертиза России» на проектно-сметную документацию «Рекультивация территории бывшего ОАО «Средне – Волжский завод химикатов».

5.1.6. Городской округ Жигулевск

Территория г.о. Жигулевск – 68,74 км². Основные отрасли экономики – гидроэнергетика, производство строительных материалов, производство автокомпонентов, обрабатывающая и пищевая промышленность, транспортный узел. Население (на 01.01.2016 г.) – 59,58 тыс. человек.

На территории городского округа в 2015 году количество зарегистрированного автотранспорта составило 28,528 тыс. единиц, в том числе легкового – 25,32 тыс. единиц, грузового – 2,788 тыс. единиц, автобусов – 0,412 тыс. единиц. Данные о негативном воздействии на окружающую среду г.о. Жигулевск представлены в таблице 5.1.6.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.6.1

Данные о негативном воздействии на окружающую среду г.о. Жигулевск за 2015 год

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>6,685</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>6,03</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>3,80</td>
</tr>
</tbody>
</table>

1 – по данным администрации г.о.; на дату последней инвентаризации – 01.01.2016 г.
Наименование и размерность показателя	Ед.изм.	Показатель
5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных 6. Лицензированные объекты захоронения отходов 7. Объем захоронения отходов на лицензированных объектах захоронения | | 1,79

Основные мероприятия природоохранного назначения в 2015 году — ликвидировано 124 несанкционированных свалки, вывезено 2579,82 м3 отходов, в мкр. Яблоневый овраг установлена Пост-лаборатория предназначена для контроля уровня загрязнения атмосферного воздуха.

5.1.7. Городской округ Отрадный

Городской округ Отрадный — промышленный узел (нефедобыча, газо-, нефтепереработка, производство строительных материалов, легкая и пищевая промышленность, нефтяное машиностроение, переработка алюминия и др.) Самарской области.

Территория г.о. Отрадный — 53,6 км². Население городского округа (на 01.01.2016 г.) — 47,47 тыс. человек.

На территории городского округа (по состоянию на 01.01.2016 г.) количество зарегистрированного автотранспорта составило 16,830² тыс. единиц, в т.ч. легкового — 11,632 тыс.единиц, грузового — 3,212 тыс.единиц , автобусов — 283 единицы.

Данные о негативном воздействии на окружающую среду г.о. Отрадный представлены в таблице 5.1.7.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.7.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед.изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>3,986</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>7,06</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>7,05</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>6,24</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>5,47</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения — всего</td>
<td>тыс.т</td>
<td>-</td>
</tr>
</tbody>
</table>

² — с 2013 года на территории городского округа ведется статистика количества зарегистрированного автотранспорта
Основные мероприятия природоохранного назначения в 2015 году: произведены реконструкция руслового водозабора с целью бесперебойного обеспечения населения питьевой водой; реконструкция насосно – фильтровальной станции для улучшения качества питьевой воды; выявлено и ликвидировано 18 несанкционированных мест размещения отходов, вывезено 302 т отходов, обустроено 45 контейнерных площадок с организацией подъезда к ним.

5.1.8. Городской округ Кинель

Городской округ Кинель – крупнейший железнодорожный узел, центр логистики и строительной индустрии, производству резинопробковых и пластмассовых деталей для автомобильной промышленности и ПЭТ-упаковки различного назначения. Территория г.о. Кинель – 108,78 км². Население округа (на 01.01.2016 г.) – 57,437 тыс. человек.

ОГИБДД МО МВД России «Кинельский» не ведёт отдельный учет автотранспорта по территории г.о. Кинель.

Данные о негативном воздействии на окружающую среду г.о. Кинель представлены в таблице 5.1.8.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.8.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,967</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>10,62</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>единиц</td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>52,421</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначений в 2015 году: ликвидировано несанкционированных свалок отходов 21 единица на территории в 1,665 га, вывезено для захоронения 299,37 тонн, произведено техническое перевооружение очистных сооружений на НФС г. Кинеля.
5.1.9. Городской округ Похвистнево

Городской округ Похвистнево – промышленно-транспортный узел, ориентированный на обслуживание добычи нефти.

Территория г.о. Похвистнево – 67,74 км². Население округа (на 01.01.2016 г.) – 29,194 тыс. человек.

На территории округа в 2015 году количество зарегистрированного автотранспорта составило 17,821 тыс. единиц, в том числе легкового – 15,675 тыс. единиц, грузового – 1,93 тыс. единиц, автобусов – 0,216 тыс. единиц.

Данные о негативном воздействии на окружающую среду г.о. Похвистнево представлены в таблице 5.1.9.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.1.9.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>7,604</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>2,00</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>15,11</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 32 несанкционированных места размещения отходов на площади 0,32 га, проектирование, расширение и реконструкция водозабора «Западный» городского округа Похвистнево - 1 очередь.

5.1.10. Городской округ Октябрьск

Городской округ Октябрьск – крупный железнодорожный узел, пункт обработки нефти и нефтепродуктов, производства строительных материалов и конструкций, легкой промышленности, автокомпонентов.

Территория г.о. Октябрьск – 22,92 км². Население округа (на 01.01.2016 г.) – 26,55 тыс. человек.

По данным РЭО ГИБДД МУ МВД России «Сызранское» в связи со сменой базы данных с АИПС-2004 на ФИСЧ-М ГИБДД и отсутствием функции выборки транспортных средств по типу предоставить информацию о наличии зарегистрированного автотранспорта на территории городского округа на 01.01.2016 г. невозможно.

Данные о негативном воздействии на окружающую среду г.о. Октябрьск представлены в таблице 5.1.10.1. Показатели таблицы составлены на основании данных статистической отчетности.
Таблица 5.1.10.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,500</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>4</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>3,25</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных: из них недостаточно очищенных</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранныего назначения в 2015 году: ликвидация 4 несанкционированных свалок на территории городского округа на площади 0,045га с вывозом на захоронение 12,5 тн отходов; строительство городских очистных сооружений.

5.2. Муниципальные районы

5.2.1. Муниципальный район Алексеевский

Муниципальный район Алексеевский специализируется на производстве (зерновые культуры, подсолнечник, продукция животноводства и др.) и переработке сельскохозяйственной продукции (пищекомбинат, молокозавод и др.), на территории района осуществляется добыча нефти. Промышленность представлена предприятиями: ОАО «Молокозавод «Алексеевский», ООО «Молсырзавод «Алексеевский», ООО «Кристалл», а так же малыми предприятиями, занимающимися переработкой и производящими муку, подсолочное масло, хлеб и хлебобулочные изделия, полуфабрикаты из мяса и рыбы.

Территория м.р. Алексеевский – 1891 км², население (на 01.01.2016 г.) – 11,608 тыс. человек. На территории района в 2015 году количество зарегистрированного автотранспорта составило 5,268 тыс. единиц, в том числе легкового – 3,912 тыс. единиц, грузового – 0,809 тыс. единиц, автобусов – 0,066 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Алексеевский представлены в таблице 5.2.1.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.1.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>2,035</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>Наименование и размерность показателя</td>
<td>Ед. изм.</td>
<td>Показатель</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,47</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>0,44</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td>единиц</td>
<td>0,05</td>
</tr>
<tr>
<td>в том числе загрязненных из них недостаточно очищенных</td>
<td>единиц</td>
<td>0,05</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>ед.</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранного назначения в 2015 году: ликвидация 7 несанкционированных свалок ТБО на площади 4,0 га; озеленение и благоустройство территорий сельских населенных пунктов.

5.2.2. Муниципальный район Безенчукский

Территория м.р. Безенчукский – 1988,8 км², население (на 01.01.2016 г.) – 40,286 тыс. человек. На территории района в 2015 году количество зарегистрированного автотранспорта составило 15,758 тыс. единиц, в том числе легкового – 12,088 тыс. единиц, грузового – 1,624 тыс. единиц, автобусов – 0,352 тыс. единиц, иные – 1,621 тыс.единиц.

Данные о негативном воздействии на окружающую среду м.р. Безенчукский представлены в таблице 5.2.2.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.2.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс. тн./год</td>
<td>9,752</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>ед.</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>5,12</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>ед.</td>
<td>1,11</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td>ед.</td>
<td>1,11</td>
</tr>
<tr>
<td>в том числе загрязненных из них недостаточно очищенных</td>
<td>ед.</td>
<td>1,11</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>ед.</td>
<td>-</td>
</tr>
</tbody>
</table>
Основными источниками загрязнения атмосферы на территории м.р. Безенчукский являются стационарные источники выбросов от дымовых труб котельных, технологические участки производственных объектов, в большей степени предприятия нефтенедобчи и предприятия, обслуживающие добычу, первичную переработку и транспортировку нефти и газа (ОАО «Самаранефтегаз», ЗАО «Сенеко» и др.), а так же автомобильный транспорт.

Основные мероприятия природоохранных назначения в 2015 году – ликвидировано 17 несанкционированных свалок отходов на площади 0,63 га с вывозом 24,35 тн отходов.

5.2.3. Муниципальный район Богатовский

Муниципальный район Богатовский специализируется на производстве и переработке сельскохозяйственной продукции (зерновые, технические и плодовые культуры, предприятия мукомольной, масложекстракционной, мясоперерабатывающей и др. подотраслей), на территории района осуществляется добыча нефти. Крупнейшие предприятия – ОАО «Масложекстракционный завод» Богатовский, ОАО «Мукомол», ООО «Комплекс». Территория м.р. Богатовский – 824 км², население (на 01.01.2016 г.) – 14,196 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 6,409 тыс. единиц, в том числе легкового – 4,698 тыс. единиц, грузового – 0,569 тыс. единиц, автобусов – 0,068 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Богатовский представлены в таблице 5.2.3.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.3.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>тыс. тн./год</td>
<td>5,611</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>2. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,75</td>
</tr>
<tr>
<td>3. Использовано свежей воды</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>6. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. тонн</td>
<td>10,050</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году – ликвидировано 3 несанкционированных свалок отходов на территории 0,11 га.
5.2.4. Муниципальный район Большеглушицкий

Муниципальный район Большеглушицкий специализируется, в основном, на производстве (зерновые культуры, подсолнечник, мясомолочное животноводство) и переработке (мукомольно-кулинарные, мясные полуфабрикаты, кондитерские изделия) сельскохозяйственной продукции; на территории района осуществляется добыча нефти, имеются запасы каменной соли, общераспространенных полезных ископаемых и др. Территория м.р. Большеглушицкий – 2543,2 км², население (на 01.01.2016 г.) – 18,992 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 8,488 тыс. единиц. Данные о негативном воздействии на окружающую среду м.р. Большеглушицкий представлены в таблице 5.2.4.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.4.1
Данные о негативном воздействии на окружающую среду м.р. Большеглушицкий в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>2,719</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>1,06</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6. Лицензионированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. тонн</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году – озеленение и благоустройство территорий населенных пунктов.

5.2.5. Муниципальный район Большечерниговский

Основа экономики муниципального образования – сельское хозяйство: растениеводство (зерноводство, технические культуры – подсолнечник, лен, нут), мясомолочное животноводство (ООО «Колос», ООО КХ «Полянское» и др.); переработка сельскохозяйственного сырья (мукомольно-кулинарная, мясоконсервационная, подотрасли, производство хлебобулочной продукции, колбасных изделий и др.). На территории района ведется добыча и переработка нефти. Территория м.р. Большечерниговский – 2805,9 км², население (на 01.01.2016 г.) – 17,984 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 8,954 тыс. единиц, в том числе легкового – 6,629 тыс. единиц, грузового – 2,209 тыс. единиц, автобусов – 0,116 тыс. единиц.
Данные о негативном воздействии на окружающую среду м.р. Большечерниговский представлены в таблице 5.2.5.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.5.1

Данные о негативном воздействии на окружающую среду м.р. Большечерниговский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс. тн./год</td>
<td>5,912</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,4</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>в том числе загрязненных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. тн</td>
<td>4,95</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году – ликвидировано 64 несанкционированных свалки отходов на территории 0,023га, вывезено 55,4 тонн отходов.

5.2.6. Муниципальный район Борский

Основа экономики муниципального района Борский – производство (зерновые культуры, подсолнечник и другие технические культуры; мясо животноводство – ООО СХП «Неприк» и др.) и переработка (хлебопекарная, маслоэкстракционная, мясоперерабатывающая подотрасли) сельскохозяйственной продукции, розлив минеральной и питьевой воды «Борская». В районе ведется нефтедобыча. На территории района находится относящаяся к Самарской области часть национального парка «Бузулукский Бор». Территория м.р. Борский – 2102,92 км², население (на 01.01.2016 г.) – 24,095 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 8,5 тыс. единиц, в том числе легкового – 7,404 тыс. единиц, грузового – 1,0 тыс. единиц, автобусов – 0,096 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Борский представлены в таблице 5.2.6.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.6.1

Данные о негативном воздействии на окружающую среду м.р. Борский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс. тн./год</td>
<td>0,263</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>-</td>
</tr>
</tbody>
</table>
Наименование и размерность показателя | Ед. изм. | Показатель
---|---|---
3. Забор воды из природных водных объектов, в том числе поверхностных | млн. м³ в год | 0,47
4. Использовано свежей воды | - | 0,45
5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных | - | -
6. Лицензированные объекты захоронения отходов | единиц | -
7. Объем захоронения отходов на лицензированных объектах захоронения | тыс. тн | 1,525

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 2 несанкционированных свалки на площади 1,5 га, вывезено 25, 0 тн отходов, в результате уборки территорий населенных пунктов и водоохранных зон площадью 239,5 га было вывезено на полигон 100,4 тн ТБО и мусора, завершено проектирование 2 очереди полигона ТБО в с. Борское (проект направлен на государственную экспертизу).

5.2.7. Муниципальный район Волжский

Территория м.р. Волжский – 2481,2 км². Население района (на 01.01.2016 г.) – 89,222 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 27,152 тыс. единиц, в том числе легкового – 19,542 тыс. единиц, грузового – 4,963 тыс. единиц, автобусов – 0,765 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Волжский представлены в таблице 5.2.7.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.7.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>тыс.тн./год</td>
<td>16,154</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>4</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>18,13</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>4,77</td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные</td>
<td>10,26</td>
<td></td>
</tr>
<tr>
<td>объекты</td>
<td>0,33</td>
<td></td>
</tr>
</tbody>
</table>
Основные мероприятия природоохранного назначения в 2015 году: ликвидированы 106 несанкционированных свалок отходов на территории 23,93 га, проведено озеленение и благоустройство территорий населенных пунктов и водоохранных зон, вывезено 3108,0 тонн мусора и бытовых отходов.

5.2.8. Муниципальный район Елховский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 3,792 тыс. единиц, в том числе легкового – 2,956 тыс. единиц, грузового – 0,157 тыс. единиц, автобусов – 0,192 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Елховский представлены в таблице 5.2.8.1. Показатели таблицы составлены на основании данных статистической отчетности.

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>объекты: в том числе загрязненных</td>
<td></td>
<td>0,31</td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td></td>
<td>0,31</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>отходов*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Объем захоронения отходов на</td>
<td>тыс. т</td>
<td>30,5</td>
</tr>
<tr>
<td>лицензированных объектах захоронения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– всего</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранного назначения в 2015 году: ликвидировано 3 несанкционированных свалок отходов площадью 0,73 га, вывезено 1,05 тыс.м³ отходов; строительство очистных сооружений и сетей канализации, а также водозабора в с. Елховка.
5.2.9. Муниципальный район Исаклинский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 5,474 тыс. единиц, в том числе легкового – 4,916 тыс. единиц, грузового – 0,468 тыс. единиц, автобусов – 0,09 тыс. единиц. Данные о негативном воздействии на окружающую среду м.р. Исаклинский представлены в таблице 5.2.9.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.9.1
Данные о негативном воздействии на окружающую среду м.р. Исаклинский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>1,476</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,25</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>0,22</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 4 несанкционированные свалки отходов на площади 0,7 га, вывезено 2,5 тн отходов; ведется реконструкция поселкового водопровода в поселке Сокский; из 12 бесхозяйных гидротехнических сооружений оформлены в собственность 10.

5.2.10. Муниципальный район Камышлинский

Основная специализация сельского хозяйства м.р. Камышлинский – производство зерна и мясомолочное животноводство, также развита переработка сельскохозяйственной продукции (молокозавод, хлебозавод, промкомбинат и др.). Ведется добыча нефти. Территория м.р. Камышлинский – 823,5 км², население (на 01.01.2016 г.) – 10,912 тыс. человек.
На территории района в 2015 году количество зарегистрированного автотранспорта составило 3,603 тыс. единиц, в том числе легкового – 2,982 тыс. единиц, грузового – 0,576 тыс. единиц, автобусов – 0,045 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Камышлинский представлены в таблице 5.2.10.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.10.1
Данные о негативном воздействии на окружающую среду м.р. Камышлинский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,288</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,29</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты, в том числе загрязненных:</td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td></td>
<td>0,04</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. тонн</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году – ликвидация 8 несанкционированных мест размещения отходов; озеленение и благоустройство жилой территории.

5.2.11. Муниципальный район Кинельский

В связи с особенностями учета автотранспорта органами ГИБДД данные по территории г.о. Кинель и муниципальному району Кинельский не представлены.

Данные о негативном воздействии на окружающую среду м.р. Кинельский представлены в таблице 5.2.11.1. Показатели таблицы составлены на основании данных статистической отчетности.
Таблица 5.2.11.1
Данные о негативном воздействии на окружающую среду м.р. Кинельский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>15,720</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>3</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>6,17</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>1,91</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>единиц</td>
<td>0,03</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>449,671</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранныго назначения в 2015 году: ликвидировано 7 несанкционированных свалок на площади 1,4 га, ввезено 165 тн отходов; замена водопроводных сетей в населенных пунктах района, высажено более 6000 саженцев деревьев, куплен новый мусоровоз, установлено 894 контейнера.

5.2.12. Муниципальный район Кинель-Черкасский

Территория м.р. Кинель-Черкасский – 2457 км², население (на 01.01.2016 г.) – 44,910 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 13,325 тыс. единиц, в том числе легкового – 10,601 тыс. единиц, грузового – 2,603 тыс. единиц, автобусов – 0,121 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Кинель-Черкасский представлены в таблице 5.2.12.1. Показатели таблицы составлены на основании данных статистической отчетности.
Данные о негативном воздействии на окружающую среду м.р. Кинель-Черкасский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>8,235</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>11,16</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>0,01</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td>единиц</td>
<td>0,33</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>0,33</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>49,983</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 19 мест несанкционированного размещения отходов (навалов), расположенных в основном в черте населенных пунктов, вывезено более 350 тонн отходов различного происхождения; завершено строительство разводящих водопроводных сетей в с. Муханово; разработана и направлена на государственную экспертизу проектно-сметная документация на строительство полигона твердых бытовых отходов вблизи районного центра Кинель-Черкассы.

5.2.13. Муниципальный район Клявлинский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 4,991 тыс. единиц, в том числе легкового – 4,649 тыс. единиц, грузового – 0,277 тыс. единиц, автобусов – 0,065 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Клявлинский представлены в таблице 5.2.13.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.13.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,229</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих</td>
<td>единиц</td>
<td>1</td>
</tr>
</tbody>
</table>
в выпуски сточных вод в поверхностные водные объекты
3. Забор воды из природных водных объектов, в том числе поверхностных
4. Использовано свежей воды
5. Сброс сточных вод в поверхностные водные объекты:
6. Лицензированные объекты захоронения отходов⁹
7. Объем захоронения отходов на лицензированных объектах захоронения

Основные мероприятия природоохранных назначения в 2015 году: ликвидация 2 несанкционированных стихийных свалок, вывезено 0,9 тн мусора; реконструкция 8 контейнерных площадок для сбора ТБО в р.ц. Клявлино.

5.2.14. Муниципальный район Кошкинский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 7,981 тыс. единиц, в том числе легкового – 6,776 тыс. единиц, грузового – 0,978 тыс. единиц, автобусов – 0,227 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Кошкинский представлены в таблице 5.2.14.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.14.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>3,268</td>
</tr>
<tr>
<td>количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>3</td>
</tr>
<tr>
<td>забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,80</td>
</tr>
<tr>
<td>использовано свежей воды</td>
<td></td>
<td>0,69</td>
</tr>
<tr>
<td>сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>0,209</td>
</tr>
<tr>
<td>лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>0,081</td>
</tr>
</tbody>
</table>

⁹ Лицензия на захоронение отходов в м.р. Кошкинский в 2015 году была выдана только одной организации – ООО "Татнефть-Самара".
Наименование и размерность показателя	Ед. изм.	Показатель
7. Объем захоронения отходов на лицензированных объектах захоронения – всего | тыс. м³ | 21,665 |

1) по данным администрации м.р. Кошкинский

Основные мероприятия природоохранных назначения в 2015 году – уборка несанкционированных мест размещения отходов на площади 0,015га, строительство очистных сооружений новой школы на 1170 мест производительностью 700м³/сутки.

5.2.15. Муниципальный район Красноармейский

Основная отрасль экономики района – сельское хозяйство, специализирующееся на производстве зерна, подсолнечника, мясомолочном животноводстве. Территория м.р. Красноармейский – 2129,2 км², население (на 01.01.2016 г.) – 17,33 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 5,306 тыс. единиц, в том числе легкового – 4,506 тыс. единиц, грузового – 0,667 тыс. единиц, автобусов – 0,133 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Красноармейский представлены в таблице 5.2.15.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.15.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>4,676</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>0</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>12,86</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>11,78</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td></td>
<td>3,73</td>
</tr>
<tr>
<td>в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году – ликвидировано 3 несанкционированные свалки на площади 2,6 га.

5.2.16. Муниципальный район Красноярский

Основная специализация экономики района – производство зерна, подсолнечника и других технических культур, мясомолочное животноводство, садоводство; перерабатывающая промышленность, производство строительных материалов; на
территории района развита нефтедобыча. Территория м.р. Красноярский – 2432,61 км², население (на 01.01.2016 г.) – 55,869 тыс. человек.

Данные по зарегистрированному автотранспорту на территории муниципального района Красноярский отсутствуют. Данные о негативном воздействии на окружающую среду м.р. Красноярский представлены в таблице 5.2.16.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.16.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>3,070</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>6</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>11,49</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>0,46</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты: в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>7,61</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1,43</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>1752,9</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 4 несанкционированных свалки на площади 0,23 га, вывезено 246 тонн отходов; построено 2 контейнерных площадки с твердым покрытием и ограждением из профлиста, приобретены 4 контейнера (емк. 8 куб.м) для сбора мусора и твердых бытовых отходов в пгт Новосемейкино; проведены работы по благоустройству родника с. Хорошенькое.

5.2.17. Муниципальный район Нефтегорский

Основные направления специализации экономики м.р. Нефтегорский: в сельском хозяйстве – производство зерна и животноводство преимущественно молочного направления; перерабатывающая промышленность (хлебозавод, масло-, молочный заводы, кондитерские изделия и др.); нефтедобыча и переработка нефти и попутного нефтяного газа (ОАО «Нефтегорский газоперерабатывающий завод», ООО «Нефтегорская буровая компания» и др.), металлобработка (ЗАО «Росскат» и др.), производство строительных материалов (ООО «Керамика»). Территория м.р. Нефтегорский (с учетом г.Нефтегорска)– 1406,6 км², население (на 01.01.2016 г.) – 33,642 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 11,911 тыс. единиц, в том числе легкового – 10,563 тыс. единиц, грузового – 1,225 тыс. единиц, автобусов – 0,123 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Нефтегорский представлены в таблице 5.2.17.1. Показатели таблицы составлены на основании данных статистической отчетности.
Данные о негативном воздействии на окружающую среду м.р. Нефтегорский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>9,289</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>25,96</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>3,44</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td></td>
<td>2,63</td>
</tr>
<tr>
<td>в том числе загрязненных</td>
<td></td>
<td>2,63</td>
</tr>
<tr>
<td>из них недостаточно очищенных</td>
<td></td>
<td>2,57</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. т</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранного назначения в 2015 году: ликвидировано 71 несанкционированное место размещения отходов, общей площадью 24,12 га.; велось проектирование полигона размещения твердых бытовых отходов с зоной первичной сортировки вблизи городского поселения Нефтегорск.

5.2.18. Муниципальный район Пестравский

Агропромышленный комплекс района в основном специализируется на производстве зерновых культур и животноводстве молочно-мясного направления и их переработке. Территория м.р. Пестравский – 1960 км², население (на 01.01.2016 г.) – 17,068 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 5,805 тыс. единиц, в том числе легкового – 4,985 тыс. единиц, грузового – 0,731 тыс. единиц, автобусов – 0,089 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Пестравский представлены в таблице 5.2.18.1. Показатели таблицы составлены на основании данных статистической отчетности.

Данные о негативном воздействии на окружающую среду м.р. Пестравский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>2,859</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>0</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,61</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты:</td>
<td></td>
<td>0,56</td>
</tr>
</tbody>
</table>
Основные мероприятия природоохранных целей в 2015 году – ликвидация 14 несанкционированных свалок; берегоукрепление реки Пестравка в с.Пестравка.

5.2.19. Муниципальный район Похвистневский

Основу экономики района составляет сельское хозяйство (в растениеводстве – производство зерновых и технических культур, в животноводстве выделяется свиноводство – ЗАО «Северный ключ», сельхозартель им. Пушкина) и переработка сельскохозяйственной продукции (ОАО «Маслозавод Похвистневский», ОАО «Похвистневогарпрому» и др.); на территории района развита нефтедобыча. Территория м.р. Похвистневский – 2105,43 км², население (на 01.01.2016 г.) – 27,941 тыс. человек.

На территории района в 2015 году количество зарегистрированного автотранспорта составило 17,821 тыс. единиц, в том числе легкового – 15,675 тыс. единиц, грузового – 1,930 тыс. единиц, автобусов – 0,216 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Похвистневский представлены в таблице 5.2.19.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.19.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ от станционарных источников</td>
<td>Тыс.тн./год</td>
<td>6,717</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов</td>
<td>млн. м³ в год</td>
<td>4,61</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>3,35</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные</td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных целей в 2015 году: ликвидировано 4 несанкционированных свалки отходов на площади 2,1 га; завершены работы по очистке русла и углублению дна реки Талкыш в границах села Султангулово.
5.2.20. Муниципальный район Приволжский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 6,454 тыс. единиц, в том числе легкового – 5,405 тыс. единиц, грузового – 0,904 тыс. единиц, автобусов – 0,145 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Приволжский представлены в таблице 5.2.20.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.20.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,030</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>2</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>32,99</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>32,08</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. тонн</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранного назначения в 2015 году: ликвидировано 2 несанкционированных навала отходов.

5.2.21. Муниципальный район Сергиевский

На территории района (на 01.01.2016) количество зарегистрированного автотранспорта составило 19,391 тыс. единиц, в том числе легкового – 15,284 тыс. единиц, грузового – 1,806 тыс. единиц, автобусов – 0,334 тыс. единиц, иные – 1,967 единиц.

Данные о негативном воздействии на окружающую среду м.р. Сергиевский представлены в таблице 5.2.21.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.21.1

Данные о негативном воздействии на окружающую среду м.р. Сергиевский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>25,538</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>4</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>22,60</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>5,23</td>
<td></td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в т.ч. загрязненных: из них недостаточно очищенных</td>
<td>15,13</td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов*</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. т</td>
<td>61,7</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначения в 2015 году: ликвидировано 35 стихийных свалок на площади 5,75 га, вывезено 815,6 тонн отходов; построено 19 контейнерных площадок; установлен 61 контейнер для сбора отходов; проведена расчистка родников в с. Старая Дмитриевка, с. Липовка и строительство шахтного колодца в с. Красный Городок; начата разработка проектно-сметной документации по объекту «Отвод сероводородных вод от вновь образованного источника в пойме р. Сургут Сергиевского района»; проведена разработка проектно-сметной документации по объекту «Очистка озера Банное в с. Сергиевск, Самарской области».

5.2.22. Муниципальный район Ставропольский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 18,029 тыс. единиц, в том числе легкового – 13,648 тыс. единиц, грузового – 4,266 тыс. единиц, автобусов – 0,115 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Ставропольский представлены в таблице 5.2.22.1. Показатели таблицы составлены на основании данных статистической отчетности.
Таблица 5.2.22.1
Данные о негативном воздействии на окружающую среду м.р. Ставропольский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>8,277</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>5</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>21,04</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>0,4</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных</td>
<td>единиц</td>
<td>0,4</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранныго назначения в 2015 году: ликвидировано 5 несанкционированных свалок общей площадью 68,9 га.

5.2.23. Муниципальный район Сызранский

Основу экономики района составляет сельское хозяйство, специализирующееся на зерновых и технических культурах, выращивании овощей (ООО «Вега» и др.), садоводстве (ООО «Кошелевский посад», ООО «Садовод»), мясомолочном животноводстве (ЗАО «Печерское» и др.) и рыбоводстве; переработке сельскохозяйственной продукции (ООО «Кристалл»). Ведется розлив питьевой воды («Раменская», «Дворцовая»), добыча и обогащение песка (ГУП «Балашейский горно-обогатительный комбинат», ЗАО «Балашейские пески»), производятся строительные материалы, осуществляется добыча нефти. Территория м.р. Сызранский – 1875,5 км², население (на 01.01.2016 г.) – 25,255 тыс. человек.

Данные отдельно по Сызранскому району ГИБДД не предоставляет.

Данные о негативном воздействии на окружающую среду м.р. Сызранский представлены в таблице 5.2.23.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.23.1
Данные о негативном воздействии на окружающую среду м.р. Сызранский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>3,048</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>5</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>1,62</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>0,94</td>
</tr>
</tbody>
</table>
Наименование и размерность показателя | Ед. изм. | Показатель |
--- | --- | --- |
5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных | | 0,21 |
6. Лицензированные объекты захоронения отходов | единиц | 1 |
7. Объем захоронения отходов на лицензированных объектах захоронения – всего | тыс. т | - |

Основные мероприятия природоохранного назначения в 2015 году: приобретены контейнеры для сбора ТБО, ликвидировано 4 несанкционированных свалки площадью 1,2 га; построены контейнерные площадки.

5.2.24. Муниципальный район Хворостянский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 5,259 тыс. единиц, в том числе легкового – 3,57 тыс. единиц, грузового – 0,730 тыс. единиц, автобусов – 0,084 тыс. единиц, иные – 0,875 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Хворостянский представлены в таблице 5.2.24.1. Показатели таблицы составлены на основе данных статистической отчетности.

Таблица 5.2.24.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>0,057</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,32</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных</td>
<td></td>
<td>0,03</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>
Основные мероприятия природоохрannого назначения в 2015 году: ликвидированы 24 навала мусора на общей площади 0,8 га; завершена разработка проектно сметной документации на строительство полигона ТБО в близи с.Хворостянка; проведена санитарная чистка лесополосы вдоль автодороги сообщением с.Липовка - с.Хворостянка протяжённостью 7 км.

5.2.25. Муниципальный район Челно-Вершинский

Сельское хозяйство района специализируется на производстве зерновых культур, сахарной свеклы, подсолнечника, картофеля, овощей; мясомолочном животноводстве. Переработка сельскохозяйственной продукции представлена хлебопекарными предприятиями, ОАО Маслосырзавод «Челно-Вершинский»; машиностроение – ОАО «Челно-Вершинский машиностроительный завод».

Территория м.р. Челно-Вершинский – 1162,35 км², население (на 01.01.2016 г.) – 15,37 тыс. человек.

На территории района на 01.01.2016 года количество зарегистрированного автотранспорта составило 4,858 тыс. единиц, в том числе легкового – 3,977 тыс. единиц, грузового – 0,801 тыс. единиц, автобусов – 0,08 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Челно-Вершинский представлены в таблице 5.2.25.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.25.1

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>4,665</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,38</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td></td>
<td>0,38</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты в том числе загрязненных из них недостаточно очищенных</td>
<td>0,12</td>
<td>0,12</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. м³</td>
<td>190,0</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохрannого назначения в 2015 году – ликвидированы 47 несанкционированных свалок отходов на площади 5 га, вывезено 32 т отходов.
5.2.26. Муниципальный район Шенталинский

На территории района в 2015 году количество зарегистрированного автотранспорта составило 4,303 тыс. единиц, в том числе легкового – 3,632 тыс. единиц, грузового – 0,591 тыс. единиц, автобусов – 0,080 тыс. единиц.

Данные о негативном воздействии на окружающую среду м.р. Шенталинский представлены в таблице 5.2.26.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.26.1

Данные о негативном воздействии на окружающую среду м.р. Шенталинский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>Тыс.тн./год</td>
<td>2,708</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>-</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,40</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>-</td>
<td>0,21</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объёкты, в том числе загрязненных из них недостаточно очищенных</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>1</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения – всего</td>
<td>тыс. т</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохрannого назначения в 2015 году – ликвидировано 68 несанкционированных свалок отходов на площади 7,6 га, вывезено 100 тн отходов.

5.2.27. Муниципальный район Шигонский

Данные о количестве зарегистрированного автотранспорта в 2015 году по территории муниципального района ОГИБДД МУ МВД России не представлены.
Данные о негативном воздействии на окружающую среду м.р. Шигонский представлены в таблице 5.2.27.1. Показатели таблицы составлены на основании данных статистической отчетности.

Таблица 5.2.27.1

Данные о негативном воздействии на окружающую среду м.р. Шигонский в 2015 году

<table>
<thead>
<tr>
<th>Наименование и размерность показателя</th>
<th>Ед. изм.</th>
<th>Показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Выбросы загрязняющих веществ в атмосферу от стационарных источников</td>
<td>тыс.тн./год</td>
<td>2,347</td>
</tr>
<tr>
<td>2. Количество водопользователей, имеющих выпуски сточных вод в поверхностные водные объекты</td>
<td>единиц</td>
<td>3</td>
</tr>
<tr>
<td>3. Забор воды из природных водных объектов, в том числе поверхностных</td>
<td>млн. м³ в год</td>
<td>0,99</td>
</tr>
<tr>
<td>4. Использовано свежей воды</td>
<td>единиц</td>
<td>0,91</td>
</tr>
<tr>
<td>5. Сброс сточных вод в поверхностные водные объекты, в том числе загрязненных из них недостаточно очищенных</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>6. Лицензированные объекты захоронения отходов</td>
<td>единиц</td>
<td>0,35</td>
</tr>
<tr>
<td>7. Объем захоронения отходов на лицензированных объектах захоронения</td>
<td>тыс. м³</td>
<td>-</td>
</tr>
</tbody>
</table>

Основные мероприятия природоохранных назначений в 2015 году – ликвидированы 52 несанкционированные свалки отходов общей площадью 16,21 га, вывезено 37,6 тн отходов.

5.3. Удельные показатели воздействия на окружающую среду

Приводимые в данном разделе удельные показатели воздействия на окружающую среду (таблица 5.3.1) могут рассматриваться в качестве дополнительных оценочных показателей воздействия на окружающую среду на территории муниципальных образований области. Они могут быть использованы для более детализированного анализа значимости отдельных видов воздействия на окружающую среду на территории каждого муниципального образования, создают основу для сравнительного анализа между муниципальными образованиями области – как в целом, так и по целевым группировкам. Выбор показателей произведен на основе имеющихся в разрезе муниципальных образований отчетных данных. Так, например, обработку и свод данных по образованию и движению отходов по форме статистической отчетности 2-тп (отходы) производит Федеральная служба по надзору в сфере природопользования, которая представляет сводные данные в целом по территории региона; в связи с изменением порядка регистрации транспортных средств органами ГИБДД по ряду муниципальных образований представляются объединенные данные и т.д. Площадь ООПТ на территории муниципальных образований взята суммарно по ООПТ федерального и регионального значения.
Удельные показатели воздействия на окружающую среду по территориям муниципальных образований (2015 год)

<table>
<thead>
<tr>
<th>Муниципальное образование</th>
<th>Атмосферный воздух</th>
<th>Водный бассейн</th>
<th>Отходы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Выбросы загрязняющих веществ от стационарных источников, тн/год на 1 постоянного жителя</td>
<td>Выбросы загрязняющих веществ от стационарных источников, тн/год на 1 км²</td>
<td>Количество автотранспорта (на 1000 человек населения)</td>
</tr>
<tr>
<td>Городские округа</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Самара</td>
<td>0,02</td>
<td>43,9</td>
<td>386,6</td>
</tr>
<tr>
<td>Тольятти</td>
<td>0,04</td>
<td>112,12</td>
<td>402,8</td>
</tr>
<tr>
<td>Сызрань</td>
<td>0,08</td>
<td>97,89</td>
<td>-</td>
</tr>
<tr>
<td>Новокуйбышевск</td>
<td>0,24</td>
<td>98,74</td>
<td>-</td>
</tr>
<tr>
<td>Чапаевск</td>
<td>0,02</td>
<td>6,32</td>
<td>612,8</td>
</tr>
<tr>
<td>Жигулевск</td>
<td>0,11</td>
<td>71,00</td>
<td>478,8</td>
</tr>
<tr>
<td>Отрадный</td>
<td>0,08</td>
<td>74,49</td>
<td>354,5</td>
</tr>
<tr>
<td>Кинель</td>
<td>0,02</td>
<td>8,89</td>
<td>-</td>
</tr>
<tr>
<td>Похвистнево</td>
<td>0,26</td>
<td>117,4</td>
<td>610,4</td>
</tr>
<tr>
<td>Октябрьск</td>
<td>0,02</td>
<td>21,82</td>
<td>-</td>
</tr>
<tr>
<td>Муниципальные районы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алексеевский</td>
<td>0,18</td>
<td>1,08</td>
<td>453,8</td>
</tr>
<tr>
<td>Безенчукский</td>
<td>0,24</td>
<td>4,90</td>
<td>391,1</td>
</tr>
<tr>
<td>Богатовский</td>
<td>0,40</td>
<td>6,81</td>
<td>451,5</td>
</tr>
<tr>
<td>Большеглушицкий</td>
<td>0,14</td>
<td>1,07</td>
<td>446,9</td>
</tr>
<tr>
<td>Большечерниговский</td>
<td>0,33</td>
<td>2,11</td>
<td>497,9</td>
</tr>
<tr>
<td>Борский</td>
<td>0,01</td>
<td>0,13</td>
<td>352,8</td>
</tr>
<tr>
<td>Волжский</td>
<td>0,18</td>
<td>6,51</td>
<td>304,3</td>
</tr>
<tr>
<td>Елховский</td>
<td>0,02</td>
<td>0,20</td>
<td>394,3</td>
</tr>
</tbody>
</table>

* – показатели водопотребления и водоотведения рассчитаны по сведениям, представленным Федеральным агентством водных ресурсов
Муниципальное образование | Атмосферный воздух | Водный бассейн | Отходы |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Выбросы загрязняющих веществ от стационарных источников, тн/год на 1 постоянного жителя</td>
<td>Количество автотранспорта (на 1000 человек населения)</td>
<td>Забор воды из природных водных объектов (м³/год/ на 1 постоянного жителя)</td>
</tr>
<tr>
<td>Исаклинский</td>
<td>0,12</td>
<td>0,93</td>
<td>428,7</td>
</tr>
<tr>
<td>Камышлинский</td>
<td>0,03</td>
<td>0,35</td>
<td>330,2</td>
</tr>
<tr>
<td>Кинельский</td>
<td>0,48</td>
<td>7,67</td>
<td>-</td>
</tr>
<tr>
<td>Кинель-Черкасский</td>
<td>0,18</td>
<td>3,31</td>
<td>296,7</td>
</tr>
<tr>
<td>Клявлинский</td>
<td>0,02</td>
<td>0,18</td>
<td>336,7</td>
</tr>
<tr>
<td>Кошкинский</td>
<td>0,14</td>
<td>1,98</td>
<td>351,7</td>
</tr>
<tr>
<td>Красноармейский</td>
<td>0,27</td>
<td>2,20</td>
<td>306,2</td>
</tr>
<tr>
<td>Красноярский</td>
<td>0,06</td>
<td>1,26</td>
<td>-</td>
</tr>
<tr>
<td>Нефтегорский</td>
<td>0,28</td>
<td>6,60</td>
<td>354,0</td>
</tr>
<tr>
<td>Пестравский</td>
<td>0,17</td>
<td>1,46</td>
<td>340,1</td>
</tr>
<tr>
<td>Похвистневский</td>
<td>0,24</td>
<td>3,19</td>
<td>637,8</td>
</tr>
<tr>
<td>Приволжский</td>
<td>0,001</td>
<td>0,02</td>
<td>274,3</td>
</tr>
<tr>
<td>Сергивский</td>
<td>0,56</td>
<td>9,29</td>
<td>424,8</td>
</tr>
<tr>
<td>Ставропольский</td>
<td>0,12</td>
<td>2,26</td>
<td>259,7</td>
</tr>
<tr>
<td>Сызранский</td>
<td>0,12</td>
<td>1,63</td>
<td>-</td>
</tr>
<tr>
<td>Хворостянский</td>
<td>0,004</td>
<td>0,03</td>
<td>329,3</td>
</tr>
<tr>
<td>Челно-Вершинский</td>
<td>0,30</td>
<td>4,01</td>
<td>316,0</td>
</tr>
<tr>
<td>Шенталинский</td>
<td>0,17</td>
<td>2,02</td>
<td>272,3</td>
</tr>
<tr>
<td>Шигонский</td>
<td>0,12</td>
<td>1,18</td>
<td>-</td>
</tr>
</tbody>
</table>
Раздел 6.
ВЛИЯНИЕ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ СРЕДЫ ОБИТАНИЯ НА ЗДОРОВЬЕ НАСЕЛЕНИЯ

Одной из актуальных проблем обеспечения санитарно-эпидемиологического благополучия населения является поддержание соответствия качественных параметров состояния среды обитания (в том числе окружающей природной среды) нормативным показателям. Санитарно-гигиеническую оценку среды обитания человека и её влияние на здоровье населения на территории региона осуществляет Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Самарской области (Управление Роспотребнадзора по Самарской области).

6.1. Санитарно-гигиеническая характеристика среды обитания

Санитарно-гигиеническая оценка состояния загрязнения атмосферного воздуха. Одной из актуальных проблем обеспечения санитарно-эпидемиологического благополучия населения является качество атмосферного воздуха в жилой застройке как фактора, влияющего на состояние среды обитания.

Оценка состояния загрязнения атмосферного воздуха на территории Самарской области проводилась по данным собственных наблюдений специалистов Управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор) по Самарской области (далее – Управление Роспотребнадзора по Самарской области) в рамках социально-гигиенического мониторинга; материалов ФГБУ «Приволжское УГМС» и других организаций.

По данным Приволжского УГМС степень загрязнения атмосферного воздуха в городах области оцениваемая посредством безразмерной величины, называемой комплексным индексом загрязнения атмосферы (ИЗА), в 2015 году во всех городах Самарской области оценивалось как «низкое». Случаев экстремально высокого и высокого загрязнения атмосферного воздуха отдельными примесями не зарегистрировано.

В Самарской области в 2015 г. на стационарных постах наблюдения Приволжского УГМС было зафиксировано 506 случаев превышения предельно допустимых максимально разовых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе (в 2014 г. -440) по таким веществам, как оксиды азота, углеводороды, оксид углерода, этилбензол, аммиак (основным источником выбросов которых является автотранспорт).

В рамках государственного санитарно-эпидемиологического надзора в Самарской области в 2015 г. исследовано 13692 проб (2014 г. - 21222 проб), из них 87,9 % в городских поселениях.

По данным статистических отчетных форм в отчетном году превышения предельно допустимых концентраций было зарегистрировано в 1,3 %, что несколько выше показателей Самарской области 2014 г (0,48 %) и среднероссийского показателя 2014 г. (1,03%).

Превышение уровня 5 ПДК в отчетном году не зарегистрировано.

Уровни загрязнения атмосферного воздуха по данным лабораторного контроля представлены в таблице 6.1.1.

В отчетном году превышения предельно допустимых максимально разовых концентраций были зарегистрированы по следующим загрязнителям: гидроксифенол, фтористый водород, взвешенные вещества, углеводороды (бензол), формальдегид, углерода оксид, аммиак, диоксид азота. Динамика распределения проб с превышением гигиенических нормативов по отдельным загрязнителям представлена в таблице 6.1.2.
Таблица 6.1.
Уровни загрязнения атмосферного воздуха по данным лабораторного контроля, осуществляемого Управлением Роспотребнадзора по Самарской области (ф. № 18)

<table>
<thead>
<tr>
<th>Показатель статистической отчетности</th>
<th>Самарская область</th>
<th>Российская Федерация</th>
</tr>
</thead>
<tbody>
<tr>
<td>Доля проб атмосферного воздуха, превышающих ПДК в городских и сельских поселениях Самарской области (%)</td>
<td>0,46</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Таблица 6.1.2.
Динамика распределения проб атмосферного воздуха с превышением ПДК м.р. по отдельным компонентам по Самарской области (2013-2015 гг.). (ф. 18)

<table>
<thead>
<tr>
<th>Определяемые на территории Самарской области ингредиенты</th>
<th>Удельный вес проб атмосферного воздуха с превышением ПДК м.р. (в %) определяемых на территории Самарской области</th>
<th>Ранг за 2014 г</th>
<th>Динамика к 2013 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего, в том числе</td>
<td>0,46</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Взвешенные вещества</td>
<td>1,1</td>
<td>2,02</td>
<td>3</td>
</tr>
<tr>
<td>Диоксид серы</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Дигидросульфид</td>
<td>0,35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Оксид углерода</td>
<td>0,25</td>
<td>0,52</td>
<td>1,57</td>
</tr>
<tr>
<td>Оксиды азота</td>
<td>0,12</td>
<td>0,04</td>
<td>0,14</td>
</tr>
<tr>
<td>Аммиак</td>
<td>0,22</td>
<td>0</td>
<td>1,38</td>
</tr>
<tr>
<td>Гидроксибензол</td>
<td>6,79</td>
<td>0</td>
<td>7,73</td>
</tr>
<tr>
<td>Формальдегид</td>
<td>1,64</td>
<td>0,69</td>
<td>1,73</td>
</tr>
<tr>
<td>Фтористый водород</td>
<td>1,4</td>
<td>2,53</td>
<td>6,48</td>
</tr>
<tr>
<td>Хлористый водород</td>
<td>0</td>
<td>9,8</td>
<td>0</td>
</tr>
<tr>
<td>Углеводороды</td>
<td>0,66</td>
<td>0,46</td>
<td>1,82</td>
</tr>
</tbody>
</table>

Примечание: ↑↓ – рост или снижение; ≈ без значительных изменений.

В целях обеспечения качества атмосферного воздуха населенных мест для источников воздействия на среду обитания и здоровье человека устанавливаются санитарно-защитные зоны.

По результатам рассмотрения проектных материалов обоснования санитарно-защитных зон в отчетном году Управлением Роспотребнадзора по Самарской области выданы положительные санитарно-эпидемиологические заключения для 168 промышленных предприятий и коммунальных объектов. С целью установления размера санитарно-защитных зон 19 предприятий подтвердили проектные решения по
обоснованию размеров санитарно-защитных зон натурными наблюдениями за уровнями загрязнения атмосферного воздуха в зоне влияния выбросов загрязняющих веществ.

Доля объектов действующих без согласованного в установленном порядке проекта организации санитарно-защитных зон продолжает снижаться и составляет на отчетный период 34,0 % (2014 г. - 36,9%). Динамика организации санитарно-защитных зон для источников воздействия на среду обитания Самарской области представлена в таблице 6.1.3.

Таблица 6.1.3.

<table>
<thead>
<tr>
<th>Организация санитарно-защитных зон для источников воздействия на среду обитания Самарской области (ф. № 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество объектов имеющих проект организации санитарно-защитных зон согласованных в установленном порядке</td>
</tr>
</tbody>
</table>

Несмотря на положительную динамику установления границ санитарно-защитных зон различных объектов, низкий уровень загрязнения атмосферного воздуха на территории жилой застройки надзор за установлением границ санитарно-защитных зон объектов остается актуальной задачей Управления Роспотребнадзора по Самарской области.

Так как в Самарской области в границах ориентировочных санитарно-защитных зон промышленных предприятий и коммунальных объектов продолжает проживать 13 855 человек (в пределах ориентировочных санитарно-защитных зон ОАО «Куйбышевский нефтеперерабатывающий завод», ОАО «Завод железобетонных изделий № 3» в г. Самара, «Новокуйбышевский нефтеперерабатывающий завод», ОАО «Роснефть» в г.Новокуйбышевск, ООО «Чапаевский силикатный завод» в г. Чапаевск и др.).

По результатам федерального государственного санитарно-эпидемиологического надзора в 2015 году Управлением Роспотребнадзора по Самарской области за нарушения санитарных правил в области охраны атмосферного воздуха (отсутствие проекта организации санитарно-защитной зоны, не выполнение производственного контроля за уровнем воздействия на среду обитания на границе СЗЗ) к административной ответственности привлечены 104 юридических лица и 35 должностных лиц в виде 139 штрафов на сумму 1 096 550 руб. В 2014 г. наложено 118 штрафов на сумму 815 400 руб.

По всем выявленным нарушениям Управлением Роспотребнадзора по Самарской области вынесены представления об устранении причин и условий, способствовавших совершению административного правонарушения. Администрациям проверенных предприятий выдано 151 предписание об устранении нарушений. За не исполнение предписания в срок 40 протоколов по статье 19.5 ч. 1 передано в мировой суд.

В отношении 2 юридических лиц судом было принято решение о приостановке деятельности объекта (ООО «Производственный Строительный Кооператив» г. Самара, ООО «Инициатива» г. Новокуйбышевск).

Управлением Роспотребнадзора по Самарской области в 2015 г. в суд направлено 2 исковых требования в защиту прав, свобод и законных интересов неопределенного круга лиц об обязанности юридических лиц устранить выявленные нарушения связанные с
загрязнением атмосферного воздуха (ООО «Торговый дом «Реметалл-С», ООО «Борскнефть»).

Динамика надзорной деятельности Управления Роспотребнадзора по Самарской области в области охраны атмосферного воздуха представлена в таблице 6.1.4.

<table>
<thead>
<tr>
<th>Принятые Управлением Роспотребнадзора по Самарской области меры административного воздействия</th>
<th>Показатели надзорной деятельности в динамике за 3 года</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество наложенных штрафов</td>
<td>114</td>
</tr>
<tr>
<td>Сумма наложенных штрафов, руб.</td>
<td>744 000</td>
</tr>
</tbody>
</table>

Постоянно растущий транспортный поток, проблемы неудовлетворительного транспортно-эксплуатационного состояния автодорог Самарской области, наличие транзитного транспорта по улично-дорожной сети городских и сельских населенных пунктов, способствуют увеличению нагрузки выбросов автомобильного транспорта на качество атмосферного воздуха населенных пунктов.

В Самарской области принята целевая программа «Модернизация и развитие сети автодорог Самарской области до 2025 г. на территории области», в составе которой предусмотрены следующие мероприятия: строительство и реконструкция автомобильных дорог общего пользования регионального или межмуниципального значения Самарской области; ремонт автомобильных дорог общего пользования регионального или межмуниципального значения Самарской области.

Гигиена водных объектов и хозяйственно-питьевого водоснабжения. Качество воды поверхностных водоемов области, используемых для питьевого водоснабжения (I категорий) и для рекреационного водопользования (II категории), по микробиологическим и санитарно-химическим показателям продолжает оставаться нестабильным в санитарно-эпидемиологическом отношении.

По данным социально-гигиенического мониторинга в целом по Самарской области в 2015 году 26,8% исследованных проб воды водоемов I категории не соответствовали гигиеническим нормативам по микробиологическим показателям (в 2014г – 31,0%, в 2013г – 26,9%); воды водоемов II категории - 29,6% (в 2014г – 16,6%, в 2013г – 31,5%).

По санитарно-химическим показателям 21,9% исследованных проб воды водоемов I категории не соответствовали гигиеническим нормативам (в 2014г – 43,7%, в 2013г – 31,3%); воды водоемов II категории – 17,4% (в 2014г – 23,3%, в 2013г – 31,5%).

В сравнении с 2014 годом в отчетном году доля неудовлетворительных проб воды водных объектов I категории по микробиологическим и санитарно-химическим показателям снизилась. Доля проб воды водных объектов II категории по микробиологическим увеличилась, по санитарно-химическим показателям снизилась (табл. 6.1.5.).

По данным многолетних наблюдений, качество воды поверхностных водоемов Самарской области не отвечает санитарным требованиям по химическому потреблению кислорода, содержанию взвешенных веществ (максимально до 2 ПДК), фенолов (максимально до 1,5 ПДК), железа (до 4 ПДК). В пробах обнаруживаются термотолерант-ные колиформные бактерии (ТКБ), общие колиформные бактерии (ОКБ),...
колифаги, патогенные микроорганизмы. Вместе с тем, возбудители кишечных инфекций в воде поверхностных водных объектов области не обнаружены.

Таблица 6.1.5.

<table>
<thead>
<tr>
<th>Категория водопользования</th>
<th>Доля проб воды, неудовлетворительной по санитарно-химическим показателям, %</th>
<th>Доля проб воды, неудовлетворительной по микробиологическим показателям, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>31,30%</td>
<td>43,70%</td>
</tr>
<tr>
<td>II</td>
<td>31,50%</td>
<td>23,30%</td>
</tr>
</tbody>
</table>

По паразитологическим показателям состояние водных объектов улучшилось. Доля проб воды водоемов II категории не соответствующих санитарным требованиям по паразитологическим показателям снизилась с 0,7% % в 2014 году до 0,1 %.

Основными причинами высокого загрязнения водных объектов на территории Самарской области по-прежнему являются: высокий фоновый уровень загрязнения, вносимый населенными пунктами и объектами, расположенными выше по течению за пределами Самарской области, сбросы загрязненных неочищенных стоков дождевой канализации, антропогенное загрязнение водоемов в зонах купания. Кроме того, отмечается загрязнение водных объектов, связанное с состоянием русел рек (заиление, загрязнение отходами).

В период купального сезона Управлением организованы систематический отбор и исследования проб воды поверхностных водоемов в 52 контрольных точках на 14 официальных пляжах, открытых в 2015 году органами местного самоуправления в установленном порядке, а также в местах купания неорганизованных в установленном порядке. Исследования проводились на санитарно-химические (ежемесячно), микробиологические (ежедневно), паразитологические показатели. Информация о качестве воды в месте водопользования направлялась в средства массовой информации.

С целью оценки влияния сточных вод на состояние водоемов проведены лабораторные исследования 158 проб воды водоемов в местах сброса сточных вод по микробиологическим, санитарно-химическим показателям и их осадков на содержание цист простейших и яиц гельминтов, опасных для человека. Все отобранные пробы соответствует гигиеническим нормативам.

В 2015 году Управлением Роспотребнадзора по Самарской области проверено 54 юридических лица, осуществляющих эксплуатацию систем водоотведения и очистных сооружений. Среди выявляемых нарушений – неэффективная работа по очистке сточных вод, что приводит к загрязнению поверхностных водных объектов и неудовлетворительная работа по организации производственного контроля.

На 43 объектах выявлены правонарушения, по результатам которых выдано 43 предписания.

По результатам проверок составлено 50 протоколов об административных правонарушениях на юридических и должностных лиц, по которым 44 лица привлечено к административной ответственности в виде штрафа на общую сумму 827000 рублей, 6 протоколов направлены в суд за невыполнение предписания, под которым приняты меры административного воздействия.
В связи со сбросом неочищенных сточных вод в поверхностный водоем — р. Падовка и загрязнение стоками территории 2 пояса зон санитарной охраны подземного источника питьевого водоснабжения населенного пункта Сырейка Кинельского района Самарской области, в результате производственной деятельности свинокомплекс ООО «Юбилейный», Управлением Роспотребнадзора по Самарской области подготовлен и направлен в суд иск в защиту прав неопределенного круга лиц с требованием обязать указанное юридическое лицо выполнить требования законодательства по исполнению требований государственных санитарно-эпидемиологических правил. Суд удовлетворил исковые требования Управления Роспотребнадзора по Самарской области и постановил прекратить ООО «Юбилейный» сброс неочищенных сточных вод в р. Падовка.

Под надзором Управления Роспотребнадзора по Самарской области находится 902 источника централизованного хозяйственно-питьевого водоснабжения, из них 886 подземных и 16 поверхностных.

Данные о состоянии источников и качестве воды в местах водозаборов представлены в таблице 6.1.6.

По данным госсанэпиднадзора в 2015 г в целом по Самарской области 225 (25,3%) подземных источников, обеспечивающих население Самарской области централизованным водоснабжением, не отвечали санитарным требованиям, в том числе 165 (18,6%) - из-за отсутствия зон санитарной охраны.

Доля водопроводов Самарской области, не отвечающих санитарно-эпидемиологическим требованиям в 2015 г составила 11,9 %.

Основными причинами несоответствия водопроводов санитарно-эпидемиологическим требованиям являются неудовлетворительное санитарно-техническое состояние сетей и сооружений, не обеспечивающее необходимое качество питьевой воды, отсутствие необходимого комплекса очистных сооружений на большинстве сельских водопроводов, питающихся из подземных вод с природной высокой жесткостью и минерализацией, а также многолетняя эксплуатация технически и морально устаревших очистных сооружений на ряде поверхностных водозаборов, в условиях ухудшающегося качества воды открытых водоемов.

В целом по Самарской области в 2015 г сохранялась тенденция улучшения качества питьевой воды по микробиологическим показателям в сравнении с показателями предыдущих лет, доля несоответствующих гигиеническим нормативам проб, отобранных из разводящей сети, снизилась до 5,8 %: в 2012г - 8,1%, в 2013г – 6,7%, в 2014г - 5,9% (среднероссийский показатель 2014г – 3,7%).

Однако в ряде административных территорий Самарской области показатель микробиологического несоответствия питьевой воды гигиеническим нормативам значительно превышает среднеблагополучные значения (на территории Красноармейского, Кинель-Черкасского, Большеглушицкого районов, в г. Октябрьске — более 20% несоответствующих проб по микробиологическим показателям).

Случаи массовых инфекционных и неинфекционных заболеваний, связанных с употреблением водопроводной воды централизованного водоснабжения отсутствуют.

Доля проб воды из разводящих сетей не соответствующих гигиеническим нормативам по санитарно-химическим показателям в целом по Самарской области в 2015 г составляет 16,9%, это ниже прошлого года (26,1%) (в среднем по России в 2014г – 15,5%). Данные о качестве водопроводной воды за ряд лет в целом по Самарской области представлены в таблице 6.1.7. и на рисунках 6.1.1. и 6.1.2.
Таблица 6.1.6.

Данные о состоянии источников централизованного хозяйственно-питьевого водоснабжения и качестве воды в местах водозаборов по Самарской области в 2013 – 2015 гг.

<table>
<thead>
<tr>
<th></th>
<th>Состояние подземных источников централизованного питьевого водоснабжения и качество воды в местах водозаборов</th>
<th>Состояние поверхностных источников централизованного питьевого водоснабжения и качество воды в местах водозаборов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Количеств от источников</td>
<td>количеств от источников</td>
</tr>
<tr>
<td>Количество источников</td>
<td>893</td>
<td>894</td>
</tr>
<tr>
<td>из них не соответствуют</td>
<td>12,7</td>
<td>12,9</td>
</tr>
<tr>
<td>санитарным правилам и нормативам (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>в т.ч. из-за отсутствия</td>
<td>12,1</td>
<td>13,2</td>
</tr>
<tr>
<td>зоны санитарной охраны (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Число исследованных проб по</td>
<td>1278</td>
<td>1207</td>
</tr>
<tr>
<td>санитарно-химическим показателям</td>
<td></td>
<td></td>
</tr>
<tr>
<td>из них не соответствуют</td>
<td>33,1</td>
<td>37,2</td>
</tr>
<tr>
<td>гигиеническим нормативам (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Число исследованных проб по</td>
<td>2015</td>
<td>2401</td>
</tr>
<tr>
<td>микробиологическим показателям</td>
<td></td>
<td></td>
</tr>
<tr>
<td>из них не соответствуют</td>
<td>5,4</td>
<td>6,2</td>
</tr>
<tr>
<td>гигиеническим нормативам (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>в т.ч. с выделенными возбудителями инфекционных заболеваний</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Таблица 6.1.7.
Доля проб питьевой воды водопроводных систем с превышением гигиенических нормативов к общему числу исследованных в целом по Самарской области в 2011 – 2015 гг.

<table>
<thead>
<tr>
<th>Год</th>
<th>Перед поступлением в распределительную сеть</th>
<th>В распределительной сети</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Доля проб воды, не соответствующих гигиеническим нормативам по микробиологическим показателям %</td>
<td>Доля проб воды, не соответствующих гигиеническим нормативам по санитарно-химическим показателям %</td>
</tr>
<tr>
<td>2011</td>
<td>5,2</td>
<td>24,4</td>
</tr>
<tr>
<td>2012</td>
<td>7,0</td>
<td>32,7</td>
</tr>
<tr>
<td>2013</td>
<td>4,0</td>
<td>21,3</td>
</tr>
<tr>
<td>2014</td>
<td>3,7</td>
<td>22,4</td>
</tr>
<tr>
<td>2015</td>
<td>2,4</td>
<td>16,4</td>
</tr>
<tr>
<td>Российская Федерация 2014г</td>
<td>нет данных</td>
<td>нет данных</td>
</tr>
</tbody>
</table>

Рис. 6.1.1. Качество водопроводной воды перед поступлением в распределительную сеть по микробиологическим и санитарно-химическим показателям в целом по Самарской области в 2011 – 2015 гг.
По данным социально-гигиенического мониторинга, в целом по Самарской области удельный процент населения, обеспеченног о водой, отвечающей требованиям безопасности составляет в 2015г 81,6%.

Из 3219548 человек, проживающих на территории Самарской области 2023784 человек 62,8 % (в среднем по РФ за 2014г - 63,9%) обеспечены доброкачественной питьевой водой.

Условно доброкачественной питьевой водой было обеспечено 604964 человек - 18,7 % населения Самарской области.

Недоброкачественную питьевую воду вынуждены употреблять 537120 человек - 16,7% жителей Самарской области.

В городах Самарской области статистический показатель обеспеченности населения питьевой водой отвечающей требованиям безопасности составлял в 2015г – 85,3%.

Показатели обеспеченности сельского населения питьевой водой, отвечающей требованиям безопасности остались на уровне прошлого года 66,7%, при этом в сельской местности доля населения обеспеченного доброкачественной питьевой водой в 2015 г возросла и составила 32,7%.

Достигнутые результаты - улучшение качества воды в разводящей сети по микробиологическим и санитарно-химическим показателям:

удельный вес проб воды из разводящей сети по микробиологическому показателю составил 5,8 % (в 2014г – 5,9 %), снижен на 0,1 %;

удельный вес проб воды из разводящей сети по санитарно-химическому показателю составил 16,9 % (в 2014г – 26,1 %), снижен на 9,2 %.

Загрязнение почв и отходы.

Оценка санитарного состояния почвы, уровня ее загрязнения и степени опасности для здоровья людей основывается на результатах лабораторных исследований.

По данным социально-гигиенического мониторинга на территории Самарской области санитарное состояние почвы по санитарно-химическим показателям за последние 3 года оценивается как стабильное. В 2015 году в сравнении с данными 2014 года отмечается уменьшение доли проб почвы, не соответствующей гигиеническим нормативам по санитарно-химическим показателям, на 4,1% (таблицы 6.1.8.).

Санитарное состояние почвы по микробиологическим показателям за период 2013г.– 2015г. стабильное.
Доля проб почвы, не соответствующая гигиеническим нормативам по санитарно-химическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>10,8</td>
<td>11,8</td>
</tr>
</tbody>
</table>

Показатель, характеризующий микробное загрязнение почвы, в сравнении с предыдущими годами снизился на 3,2% и составил 10,2 от числа отобранных проб почвы (таблица 6.1.9.).

Доля проб почвы, не соответствующая гигиеническим нормативам по микробиологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>13,4</td>
<td>13,4</td>
</tr>
</tbody>
</table>

Санитарное состояние почвы по паразитологическим показателям в динамике за последние 3 года оценивается как стабильное. Доля проб почвы, не соответствующая гигиеническим нормативам по паразитологическим показателям, в 2015 году в сравнении с 2014 годом уменьшилась на 0,5%, составив 0,7 от числа отобранных проб почвы (таблица 6.1.10.).

Доля проб почвы, не соответствующая гигиеническим нормативам по паразитологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>0,8</td>
<td>1,2</td>
</tr>
</tbody>
</table>

За последние три года прослеживается четкая тенденция к незначительному снижению доли проб почвы в селитебной зоне, не соответствующей гигиеническим нормативам по санитарно-химическим показателям. В 2015 году в сравнении с 2013г.-2014г. число неудовлетворительных проб почвы, отобранных на территории жилой застройки, снизилось в 2 раза (таблица 6.1.11.).
Доля проб почвы, не соответствующая гигиеническим нормативам в селитебной зоне по санитарно-химическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>18,0</td>
<td>17,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,8</td>
</tr>
</tbody>
</table>

В 2015 году доля проб почвы не соответствующих гигиеническим нормативам по микробиологическим показателям в сравнении с 2013 г. - 2014 г. в среднем снизилась в 1,5 раза (таблица 6.1.12.).

Доля проб почвы, не соответствующая гигиеническим нормативам в селитебной зоне по микробиологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>13,8</td>
<td>11,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,6</td>
</tr>
</tbody>
</table>

Доля проб почвы, не соответствующая гигиеническим нормативам в селитебной зоне по паразитологическим показателям, в 2015 году в сравнении с 2014 годом уменьшилась в 2,9 раза и составила 0,5 от числа отобранных проб почвы (таблица 6.1.13.).

Доля проб почвы, не соответствующая гигиеническим нормативам в селитебной зоне по паразитологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>0,65</td>
<td>1,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
</tr>
</tbody>
</table>

В 2015 году из 60 проб почвы, отобранных на территориях детских учреждений и детских площадок, не соответствующих гигиеническим нормативам по санитарно-химическим показателям не зарегистрировано (таблица 6.1.14.).
Доля проб почвы, не соответствующая гигиеническим нормативам на территории детских учреждений и детских площадок по санитарно-химическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>3,2</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Доля проб почвы на территориях детских учреждений и детских площадок, не соответствующая гигиеническим нормативам по микробиологическим показателям, в 2015 году в сравнении с 2014 годом снизилась на 6,9% и составила 2,9 от числа отобранных проб почвы (таблица 6.1.15.).

Доля проб почвы, не соответствующая гигиеническим нормативам на территории детских учреждений и детских площадок по микробиологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>1,4</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>9,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,9</td>
<td></td>
</tr>
</tbody>
</table>

За отчетный год отмечается уменьшение доли проб почвы, не соответствующей гигиеническим нормативам на территориях детских учреждений и детских площадок по паразитологическим показателям, на 1,5%. В 2015 году в сравнении с предыдущим 2014 годом данный показатель снизился в 4 раза и составил 0,5 от числа отобранных проб почвы (таблица 6.1.16.).

Доля проб почвы, не соответствующая гигиеническим нормативам на территории детских учреждений и детских площадок по паразитологическим показателям

<table>
<thead>
<tr>
<th>Субъекты Российской Федерации</th>
<th>Доля проб почвы, не соответствующая гигиеническим нормативам, %</th>
<th>Динамика к 2013 г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самарская область</td>
<td>0,1</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

Основными причинами, оказывающими влияние на микробиологическое и паразитологическое загрязнение почвы селитебных зон Самарской области, по-прежнему являются: недостаточное благоустройство территорий населенных мест, несовершенная система очистки территорий, отсутствие организованных мест выгула домашних животных, наличие безнадзорных собак и кошек, недостаточное количество общественных туалетов, недостаточная культура населения и другие факторы.

Управлением Роспотребнадзора по Самарской области (далее Управление) в рамках плановых проверок проводится обязательная оценка условий сбора, накопления,
утилизации и вывоза образующихся отходов, а также состояния санитарной очистки территорий поднадзорных объектов.

В 2015 году специалистами Управления было проведено 3352 плановых мероприятий по контролю.

На территории Самарской области созданы необходимые условия для централизованного сбора и размещения отходов лечебно-профилактических учреждений (ЛПУ), хозяйственную деятельность, образующую медицинские отходы, осуществляет 3994 субъекта.

Обеззараживание и термическое уничтожение медицинских отходов осуществляется на 21 установке «Ньюстер-10» ГУП СО «ЦУМО». В 2015 году было уничтожено 408710 тонн медицинских отходов классов Б и В.

Основными проблемами обращения с медицинскими отходами на территории Самарской области продолжают оставаться недостаточность в ЛПУ установок по физическому обеззараживанию опасных медицинских отходов, отсутствие условий для специализированной обработки и мытья контейнеров, принимающих отходы от мелких лечебно-профилактических учреждений поликлинического профиля (косметологические, стоматологические кабинеты) при децентрализованном сборе отходов.

Достигнутые результаты.

По данным социально-гигиенического мониторинга на территории Самарской области за 2015 год отмечено:

- снижение доли проб почвы, не соответствующей гигиеническим нормативам в селитебной зоне, по микробиологическим показателям до 8,5% (2013г. – 13,8%, 2014 г. – 11,7%);
- снижение доли проб почвы, не соответствующей гигиеническим нормативам в селитебной зоне, по санитарно-химическим показателям до 8,8% (2013г. - 18,0%, 2014 г. – 17,0%);
- снижение доли проб почвы не соответствующей гигиеническим нормативам по паразитологическим показателям до 0,5% (2014г. - 1,2%).

Радиационная обстановка. Для решения задачи постоянного и эффективного контроля за радиационной безопасностью в Самарской области внедрена единая система обеспечения радиационной безопасности населения, включающая радиационно-гигиеническую паспортизацию и региональные банки доз облучения персонала и населения, являющиеся частью Единой государственной системы контроля и учета доз облучения населения России (ЕСКИД).

Радиационная обстановка в Самарской области в 2014, 2015 годах существенно не изменялась и в целом остается удовлетворительной. Радиационный фактор ведущим фактором вредного воздействия на здоровье населения Самарской области не является.

Средняя годовая эффективная доза облучения на 1 жителя Самарской области по итогам радиационно-гигиенической паспортизации 2014 года – 3,56 мЗв существенно не отличается от общероссийского показателя - 3,22 мЗв.

Коллективная годовая эффективная доза населения Самарской области за счет всех источников ионизирующего излучения (далее - ИИИ) составила в 2015 году – 11,44 тыс. чел.-Зв.

В структуре коллективных доз облучения населения Самарской области ведущее место занимают природные и медицинские источники ионизирующего излучения (таблица 6.1.17.).

В 2015 году на территории Самарской области деятельность с источниками ионизирующего излучения (ИИИ) осуществляли 489 организации, из них 9 организаций (1,8%) - III категории по потенциальной радиационной опасности. В указанных организациях под воздействием ИИИ находилось 3470 человека, из которых 3001 - персонал группы А и 469 – персонал группы Б.
Структура годовых коллективных эффективных доз облучения населения
(по данным радиационно-гигиенических паспортоо Самарской области за 2014-2015 годы)

<table>
<thead>
<tr>
<th>Виды облучения населения территории</th>
<th>Коллективная доза</th>
<th>Средняя на жителя, мЗв/чел.</th>
</tr>
</thead>
<tbody>
<tr>
<td>деятельности предприятий, использующих ИИИ</td>
<td>3,75</td>
<td>3,64</td>
</tr>
<tr>
<td>техногенно измененного радиационного фона</td>
<td>16,07</td>
<td>16,07</td>
</tr>
<tr>
<td>природных источников</td>
<td>9469,58</td>
<td>10793,46</td>
</tr>
<tr>
<td>медицинских исследований</td>
<td>1948,45</td>
<td>1913,41</td>
</tr>
<tr>
<td>ВСЕГО</td>
<td>11437,86</td>
<td>12726,58</td>
</tr>
</tbody>
</table>

Объекты 1 и 2 категории по потенциальной радиационной опасности на территории Самарской области отсутствуют.

В 2015 году по данным ежедневных измерений ФГБУ «Приволжское УГМС» и социально-гигиенического мониторинга радиационной обстановки, проводимой Управлением Роспотребнадзора по Самарской области, в 100-километровых зонах расположения сопредельных объектов I категории по потенциальной радиационной опасности мощность дозы гамма-излучения находилась в пределах радиационного фона.

Уровень плотности загрязнения почвы цезием-137: 0,12 кБк/м² (средний), 0,2 кБк/м² (максимальный) в 2015 году не превышал фоновую для Российской Федерации величину загрязнения вследствие глобальных выпадений: 3,7 кБк/м².

Неудовлетворительной остается радиационная обстановка в здании бывшего цеха № 81 ОАО "Фосфор" (Центральный район г.о. Тольятти) и прилегающей к нему территории имеется техногенное загрязнение цезием-137, образовавшееся в результате произошедшей в 1984 году радиационной аварии (механическая разгерметизация радионуклидного источника на основе цезия-137) в помещении слесарной мастерской указанного цеха.

В 2015 году в рамках радиационно-гигиенического мониторинга Управлением проводились дозиметрические измерения на ул. Новозаводской вдоль ограждения территории бывшего ОАО «Фосфор». Средняя мощность эквивалентной дозы гамма-излучения - 0,11 мкЗв/час существенно не отличалась от фоновых значений в мониторинговых точках остальных административных территорий области.

Контроль содержания радиоактивных веществ в атмосферном воздухе на территории Самарской области проводят ФГБУ «Приволжское УГМС» и ФБУЗ «Центр гигиены и эпидемиологии в Самарской области».

В 2015 году на территории Самарской области суммарная бета-активность и содержание отдельных радионуклидов в приземной атмосфере существенно не изменялись, пробы с превышением допустимой среднегодовой объемной активности радионуклидов для населения, не регистрировались. Были проведены измерения 54 проб воды открытых источников водоснабжения населения. Пробы с превышением контрольных уровней по суммарной альфа-, бета-активности не регистрировались. Обследовано на показатели радиационной безопасности 258 (28,6%) источников централизованного водоснабжения. В 15 пробах (5,8%) выявлено превышение предварительного уровня качества воды по показателям радиационной безопасности по суммарной альфа-активности. Проведенные спектрометрические измерения не выявили проб воды с содержанием радионуклидов, создающих эффективную дозу более 1 мЗв/год.
и требующих проведения защитных мероприятий. Исследованы 261 проб пищевых продуктов, которые соответствовали гигиеническим нормативам.

ОБлучение от природных источников ионизирующего излучения.

Радиационный фон на территории Самарской области в 2015 году находился в диапазоне 0,07-0,11 мкЗв/час и в среднем составлял 0,1 мкЗв/час. Участки, территории с повышенным уровнем выделения радона из почвы не выявлялись.

Природные источники являются ведущим фактором облучения населения Самарской области. В 2015 году по результатам радиационно-гигиенической паспортизации их вклад в коллективную дозу облучения составил 82,79%, средняя доза природного облучения на 1 жителя Самарской области - 2,947 мЗв/год, что существенно не отличается от аналогичного показателя по Российской Федерации - 3,22 мЗв/год. Уровень природного облучения населения области не превышает 5 мЗв в год и считается приемлемым (п. 5.1.2 СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности ОСПОРБ-99/2010»).

Вклад отдельных источников в коллективную дозу природного облучения приведен в таблице 6.1.18.

Таблица 6.1.18.
Структура годовой коллективной эффективной дозы облучения населения от природных ИИИ (уд. вес, %)
(по данным радиационно-гигиенического паспорта за 2014-2015 годы)

<table>
<thead>
<tr>
<th>Виды облучения</th>
<th>Коллективная доза</th>
<th>Средняя доза</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>вклад, %</td>
<td>вклад, %</td>
</tr>
<tr>
<td>от внешнего гамма-</td>
<td>5144,49 6362,33</td>
<td>54,32 58,95</td>
</tr>
<tr>
<td>излучения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от космического</td>
<td>1947,26 1989,03</td>
<td>20,55 18,43</td>
</tr>
<tr>
<td>излучения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от пищи и питьевой</td>
<td>1285,32 1285,32</td>
<td>13,57 11,90</td>
</tr>
<tr>
<td>воды</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от калия-40</td>
<td>546,26 610,53</td>
<td>5,77 5,66</td>
</tr>
<tr>
<td>всего</td>
<td>9469,58 10793,46</td>
<td>100 100</td>
</tr>
</tbody>
</table>

100% исследованных в 2015 году проб строительных материалов (93 пробы материалов местного производства и 2 пробы привозных материалов) относятся к материалам 1 класса и могут использоваться без ограничений в строительстве.

Медицинское облучение.

По результатам радиационно-гигиенической паспортизации территории Самарской области в 2015 году вклад в годовую эффективную коллективную дозу облучения населения Самарской области за счет медицинского облучения составляет 15,03% и занимает второе место после облучения природными источниками.

Наибольший вклад (до 53,3%) в коллективную дозу медицинского облучения вносит компьютерная томография (таблица 6.1.19.).

Средние дозы при наиболее массовых флюорографических, рентгенографических исследованиях в Самарской области ниже общероссийского показателя на 33 %, что обусловлено использованием современного цифрового малодозового оборудования и 100% охватом данных исследований инструментальным контролем доз пациентов.

В 2015 году 99,8% доз облучения пациентов при медицинских рентгенологических исследованиях были получены инструментальными методами, предусматривающими радиационные характеристики конкретного рентгеновского аппарата.
Таблица 6.1.19.

Структура медицинского облучения населения Самарской области по видам исследований.

<table>
<thead>
<tr>
<th>Вид исследований</th>
<th>Самарская область</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Средняя доза за процедуру, мЗв</td>
<td>Вклад в коллективную дозу, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014г</td>
<td>2015г</td>
<td>2014г</td>
<td>2015г</td>
</tr>
<tr>
<td>Флюорография</td>
<td>0.06</td>
<td>0.06</td>
<td>7.18</td>
<td>7.12</td>
</tr>
<tr>
<td>Рентгенография</td>
<td>0.08</td>
<td>0.08</td>
<td>16.13</td>
<td>16.90</td>
</tr>
<tr>
<td>Рентгеноскопия</td>
<td>4.45</td>
<td>3.67</td>
<td>11.84</td>
<td>9.02</td>
</tr>
<tr>
<td>Компьютерная томография</td>
<td>5.05</td>
<td>4.84</td>
<td>53.34</td>
<td>56.40</td>
</tr>
<tr>
<td>Радионуклидные исследования</td>
<td>2.29</td>
<td>2.35</td>
<td>1.84</td>
<td>1.81</td>
</tr>
<tr>
<td>Прочие</td>
<td>9.81</td>
<td>9.58</td>
<td>9.66</td>
<td>8.75</td>
</tr>
<tr>
<td>Итог</td>
<td>0.30</td>
<td>0.29</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Наибольший охват инструментальным контролем наблюдается при флюорографических, рентгенографических исследованиях, компьютерной томографии, «прочих» исследованиях (100%), наименьший – при рентгеноскопических исследованиях (82,4%).

С целью снижения медицинского облучения Управлением Роспотребнадзора по Самарской области в соответствии с планом организационных мероприятий совместно с Министерством здравоохранения Самарской области ежегодно проводятся совещания с врачами-рентгенологами медицинских организаций области. Анализ доз облучения пациентов ежегодно доводится до сведения Министерства здравоохранения Самарской области, подконтрольных медицинских организаций. В ходе плановых мероприятий по контролю обеспечен должный надзор за контролем, учетом доз облучения пациентов.

Техногенные источники ионизирующего излучения.

В 2015 году Управлением Роспотребнадзора по Самарской области выявлены нарушения санитарно-эпидемиологических правил и нормативов в 68% (112 из 165) проверенных предприятий и организаций, осуществляющих деятельность с ИИИ, составлено 168 протоколов об административных правонарушениях. По результатам лабораторно-инструментального контроля рабочих мест с воздействием ионизирующего излучения, не соответствующих санитарным нормам, не выявлено.

Основными нарушениями, выявленными в ходе мероприятий по контролю, являлись: несоответствие санитарным правилам объема и периодичности производственного радиационного контроля; допуск персонала к работе с ИИИ без предварительного или периодического медицинского осмотра и специальной подготовки по радиационной безопасности; в медицинских организациях – отсутствие технических паспортов рентгеновских кабинетов, недостаточность средств индивидуальной радиационной защиты персонала и пациентов, отсутствие санитарно-эпидемиологических заключений о соответствии санитарным правилам условий работы с ИИИ.

Физические факторы среды обитания человека

Основными источниками ЭМП на территории Самарской области являются передающие радиотехнические объекты (в т.ч. объекты телевизионного и радиовещания), а также базовые станции сотовой связи.

Проводимый анализ показывает, общее количество объектов - источников ЭМП в населенных пунктах Самарской области возрастает. Так, общее количество объектов надзора, являющихся источниками ЭМП на территории Самарской области по состоянию на конец 2015 года достигло 5700, за счет увеличения количества базовых станций сотовой связи (таблица 6.1.20.).
Таблица 6.1.20.
Динамика количества объектов надзора ПРТО и количества введенных в
эксплуатацию ПРТО

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество объектов надзора</td>
<td>3500</td>
<td>4200</td>
<td>5000</td>
<td>5700</td>
</tr>
<tr>
<td>Количество объектов, введенных в эксплуатацию</td>
<td>345</td>
<td>610</td>
<td>745</td>
<td>1172</td>
</tr>
</tbody>
</table>

Высокую значимость вопросов, связанных с размещением и эксплуатацией объектов – источников ЭМП, подтверждает количество обращений, поступающих в адрес Управления Роспотребнадзора по Самарской области о возможном вредном воздействии электромагнитного излучения на здоровье населения (таблица 6.1.21.).

В 2015 году общее количество обращений граждан о возможном вредном воздействии электромагнитного излучения на здоровье населения уменьшилось по сравнению с 2014 годом.

Таблица 6.1.21.
Динамика количества обращений от граждан на установку ПРТО.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54</td>
<td>61</td>
<td>82</td>
<td>160</td>
<td>98</td>
</tr>
</tbody>
</table>

При проверке доводов обращений, с проведением натурных лабораторно-инструментальных исследований, превышений предельно-допустимых уровней ЭМИ в жилых помещениях не выявлено. В 2015 году проведено 2200 исследований уровней электромагнитного излучения (таблица 6.1.22.).

Таблица 6.1.22.
Динамика количества проведенных замеров уровней ЭМП.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8000</td>
<td>6100</td>
<td>5100</td>
<td>4200</td>
<td>2200</td>
</tr>
</tbody>
</table>

В 2015 г. удельный вес промышленных предприятий, не отвечающих санитарно-эпидемиологическим требованиям, составил: по уровню шума 16,7%, освещенности – 25,0%, вибрации – 5,7%, электромагнитных излучений – 1,4%, по микроклимату – 6,4% (табл. 6.1.23.).

Таблица 6.1.23.
Удельный вес обследованных промышленных предприятий, не отвечающих санитарно-эпидемиологическим требованиям по физическим факторам.

<table>
<thead>
<tr>
<th>Фактор/год</th>
<th>2013г.</th>
<th>2014г.</th>
<th>2015г.</th>
<th>Темп прироста к 2013 г., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шум</td>
<td>22,8</td>
<td>10,8</td>
<td>16,7</td>
<td>- 26,7</td>
</tr>
<tr>
<td>Освещенность</td>
<td>28,1</td>
<td>20,7</td>
<td>25,0</td>
<td>- 11,03</td>
</tr>
<tr>
<td>Вибрация</td>
<td>13,6</td>
<td>6,4</td>
<td>5,7</td>
<td>- 58,1</td>
</tr>
<tr>
<td>Электромагнитные поля</td>
<td>5,4</td>
<td>0,9</td>
<td>1,4</td>
<td>- 74,1</td>
</tr>
<tr>
<td>Микроклимат</td>
<td>10,8</td>
<td>8,5</td>
<td>6,4</td>
<td>- 40,7</td>
</tr>
</tbody>
</table>

Неблагоприятное воздействие физических факторов наиболее выражено в условиях производства, что приводит к развитию профессиональной заболеваемости работающих. В Самарской области на протяжении ряда лет ведущее место среди профессиональных
заболеваний занимают заболевания, вызванные воздействием физических факторов (нейросенсорная тугоухость, вибрационная болезнь).

Вредное воздействие физических факторов, прежде всего шума и вибрации на работающих, по-прежнему, наблюдается в производстве машин и оборудования, производстве летательных и космических аппаратов, химическом производстве, деревообрабатывающей промышленности, металлургическом производстве, сельском хозяйстве и на транспорте.

Главными причинами превышения допустимого уровня физических факторов на рабочих местах являются несовершенство технологических процессов, конструктивные недостатки технологического оборудования и инструментов, их физический износ, не принятие со стороны работодателей необходимых мер по обеспечению безопасных условий труда работающих в соответствии с требованиями законодательства в области обеспечения санитарно-эпидемиологического благополучия населения.

Профessionsиальная заболеваемость.

На контроле Управления в 2015 году находилось 2586 промышленных предприятий. Продолжается тенденция снижения удельного веса объектов 3 группы, крайне неудовлетворительных в санитарно-эпидемиологическом отношении: с 22,23% в 2013 г. до 18,87% в 2015 г. (табл. 6.1.24.). Однако данный показатель остаётся выше среднероссийского (8,79%).

Таблица 6.1.24.

<table>
<thead>
<tr>
<th>Группы</th>
<th>Удельный вес объектов надзора, %</th>
<th>Темп прироста к 2013 г., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I группа удовлетворительное</td>
<td>11,54</td>
<td>11,80</td>
</tr>
<tr>
<td>II группа неудовлетворительное</td>
<td>66,24</td>
<td>67,92</td>
</tr>
<tr>
<td>III группа крайне неудовлетворительное</td>
<td>22,23</td>
<td>20,28</td>
</tr>
</tbody>
</table>

Характеристика результатов исследований воздушной среды рабочей зоны на промышленных предприятиях области показала, что удельный вес проб с превышением ПДК на пары и газы в 2015 году уменьшился, а удельный вес проб с превышением ПДК на пыль и аэрозоли увеличился (табл. 6.1.25.).

Таблица 6.1.25.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>2013 г.</th>
<th>2014 г.</th>
<th>2015 г.</th>
<th>Темп прироста к 2013 г., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число обследованных объектов, всего</td>
<td>837</td>
<td>916</td>
<td>841</td>
<td>0,5</td>
</tr>
<tr>
<td>Удельный вес обследованных лабораторно, %</td>
<td>58,1</td>
<td>51,9</td>
<td>51,2</td>
<td>-11,9</td>
</tr>
<tr>
<td>Число исследованных проб на пары и газы</td>
<td>6668</td>
<td>6188</td>
<td>6707</td>
<td>0,6</td>
</tr>
<tr>
<td>- из них доля проб с превышением ПДК воздуха</td>
<td>0,9</td>
<td>0,6</td>
<td>0,7</td>
<td>-22,2</td>
</tr>
<tr>
<td>рабочей зоны</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Число исследованных проб на пыль и аэрозоли | 2567 | 3007 | 3050 | 18,8
---|---|---|---|---
- из них доля проб с превышением ПДК воздуха рабочей зоны | 2,2 | 2,1 | 3,7 | 68,2

Удельный вес проб веществ 1 и 2 класса опасности с превышением ПДК воздуха рабочей зоны:
- пары и газы | 2,1 | 1,0 | 0,6 | -71,4
- пыль и аэрозоли | 0,9 | 1,5 | 3,3 | 266,7

С 2013 г. отмечается тенденция снижения удельного веса рабочих мест неудовлетворительных по всем исследованным параметрам физических факторов (шума, вибрации, микроклимата, освещенности, ЭМИ). Однако, показатели удельного веса рабочих мест, не отвечающих гигиеническим нормативам по параметрам шума и вибрации остаются стабильно высокими, что связано с износом и старением технологического оборудования и транспорта (рис. 6.1.3.).

Рис. 6.1.3. Удельный вес измерений с превышением ПДУ уровней шума, вибрации, ЭМИ, микроклимата, освещенности в 2013-2015 г.г.

Первое ранговое место, как и в предыдущие годы, занимают заболевания, связанные с воздействием физических факторов – 45,5%, на втором - заболевания, связанные с физическими перегрузками и перенапряжением отдельных органов и систем – 38,2%. Третье ранговое место заняли заболевания, вызванные воздействием химического фактора –7,3%, заболевания, вызванные воздействием промышленных аэрозолей, на четвертом месте – 5,1%. На пятом месте аллергические заболевания – 2,2%, на шестом - заболевания, вызванные действием биологических факторов – 1,6% (табл. 6.1.26.) , рис. №58).

<table>
<thead>
<tr>
<th>Группы заболеваний</th>
<th>Удельный вес, %</th>
<th>Темп прироста к 2013 г., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Заболевания, связанные с воздействием</td>
<td>54,4</td>
<td>52</td>
</tr>
</tbody>
</table>
Физические факторы

Заболевания, связанные с физическими перегрузками и перенапряжением отдельных органов и систем	31,5	31,9	38,2	21,3
Заболевания, связанные с воздействием химических веществ	8,9	7,1	7,3	-18,0
Заболевания, связанные с воздействием промышленных аэрозолей	3,3	4,8	5,1	54,5

![Diagram showing the structure of professional diseases in 2013-2015, %](image)

- заболевания, связанные с воздействием физических факторов
- заболевания, связанные с физическими перегрузками и перенапряжением отдельных органов и систем
- заболевания, вызванные воздействием химических факторов
- заболевания, вызванные воздействием промышленных аэрозолей
- аллергические заболевания
- заболевания, вызванные действием биологических факторов

Рис. 6.1.4. Структура профессиональных заболеваний в зависимости от воздействия вредных производственных факторов в 2013-2015 гг., %

6.2. Медико-демографические показатели здоровья населения

Численность постоянного населения Самарской области на 1 января 2015 г. составила 3212,7 человек. За последние 3 года (с 2012 по 2014 гг.), численность всего постоянного населения области уменьшилась на 1,4 тыс. человек (по РФ увеличилась на 3,3 млн. человек). В 2014 г., по сравнению с 2005 г. (интервал 10 лет), численность населения области уменьшилась на 11,4 тыс. человек; по РФ уменьшилась на 2,5 млн. человек.

За период с 2012 по 2014 г. в Самарской области увеличилась доля возрастной группы младше трудоспособного населения на 0,9% (по РФ - на 1,1%), доля возрастной группы населения трудоспособного возраста уменьшилась по области на 1,8% (по РФ - на 2,5%), доля населения старше трудоспособного возраста увеличилась на 0,9% (по РФ – на 1,4%).
Средний возраст за 3 года (с 2012 по 2014 гг.) увеличился: у всего населения Самарской области - на 0,2 лет (по РФ - на 0,2 лет); у мужчин - на 0,2 лет (по РФ - на 0,1 лет); у женщин - на 0,3 лет (по РФ - на 0,2 лет).

Соотношение между численностью всего городского и сельского населения в Самарской области составило 80% и 20%, соответственно (рис. 6.2.2.). По РФ в 2012-2014 гг. соотношение между численностью всего городского и сельского населения составило 74% и 26%, соответственно.

Ожидаемая продолжительность жизни при рождении в Самарской области ниже таковой по РФ (табл. 6.2.1.) и составила: у всего населения в 2014 г. - 69,63 лет (за 3 года уменьшилась на 0,02 лет), у мужчин - 63,35 лет (за 3 года уменьшилась на 0,14 лет), у женщин – 75,93 лет (за 3 года увеличилась на 0,16 лет). Таким образом, в Самарской области в 2014 г. у женщин выше ожидаемая продолжительность жизни, чем у мужчин на 12,58 лет (в РФ – на 12,58 лет).

Рис. 6.2.1. Возрастно-половая структура населения в Самарской области (на начало 2013-2015 гг.)
Рис. 6.2.2. Динамика соотношения между численностью городского и сельского населения в Самарской области (удельный вес, 1998-2015 гг.)

Ожидаемая продолжительность жизни при рождении в Самарской области ниже таковой по РФ (табл. 6.2.1.) и составила: у всего населения в 2014 г. - 69,63 лет (за 3 года уменьшилась на 0,02 лет), у мужчин - 63,35 лет (за 3 года уменьшилась на 0,14 лет), у женщин – 75,93 лет (за 3 года увеличилась на 0,16 лет). Таким образом, в Самарской области в 2014 г. у женщин выше ожидаемая продолжительность жизни, чем у мужчин на 12,58 лет (в РФ – на 12,58 лет).

Таблица 6.2.1.

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Все население</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>РФ</td>
<td>68,78</td>
<td>68,94</td>
<td>69,83</td>
<td>70,24</td>
<td>70,76</td>
<td>70,93</td>
</tr>
<tr>
<td>Самарская область</td>
<td>68,55</td>
<td>68,13</td>
<td>69,02</td>
<td>69,65</td>
<td>69,4</td>
<td>69,63</td>
</tr>
<tr>
<td>мужчины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>РФ</td>
<td>62,87</td>
<td>63,09</td>
<td>64,04</td>
<td>64,56</td>
<td>65,13</td>
<td>65,29</td>
</tr>
<tr>
<td>Самарская область</td>
<td>62,49</td>
<td>62,02</td>
<td>62,9</td>
<td>63,49</td>
<td>63,28</td>
<td>63,35</td>
</tr>
<tr>
<td>женщины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>РФ</td>
<td>74,79</td>
<td>74,88</td>
<td>75,61</td>
<td>75,86</td>
<td>76,3</td>
<td>76,47</td>
</tr>
<tr>
<td>Самарская область</td>
<td>74,64</td>
<td>74,32</td>
<td>75,16</td>
<td>75,77</td>
<td>75,5</td>
<td>75,93</td>
</tr>
</tbody>
</table>

С 2012 г. по 2014 г. у населения Самарской области коэффициент рождаемости снизился с 12,2 до 12,6 (по РФ остался на прежнем уровне - 13,3 и 13,3); коэффициент смертности снизился на 13,9 до 14,3 (по РФ снизился с 13,3 до 13,1); коэффициент естественного прироста не изменился (рис. 6.2.3.).

Миграция. В 2014 г. общий коэффициент миграционного прироста (человек в расчете на 100 тыс. населения) по Самарской области увеличился в 1,7 раз по сравнению с 2013 г. и составил 22 (в 2013 г. – 13, в 2012 г. – 16); по РФ в 2014 г. – 19 (увеличение по сравнению с предыдущим годом в 1,5 раз (рис. 6.2.4.). В 2012-2014 гг. наиболее высокие показатели миграционного прироста отмечались в Ставропольском районе (455,33), в г.Кинель (128), в районах Волжском (107,67) и Богатовском (90,67), в г. Чапаевск (72,67), в Красноярском районе (47,00) и в городе Похвистнево (44,67) и др. (среднеобластной уровень составил 20).
Рис. 6.2.3. Общие коэффициенты рождаемости, смертности, естественного прироста у населения Самарской области (на 1000 человек населения)

Рис. 6.2.4. Коэффициенты общей миграции всего населения в Самарской области и РФ за 2008-2014 гг.

По среднему варианту прогноза численности населения в Самарской области с 2015 г. по 2031 г. ожидается уменьшение численности населения на 83964 человека (с 3212676 человек до 3128712 человек, соответственно); по РФ - увеличение населения на 936,7 тыс. человек (с 146754300 человек до 147691000 человек, соответственно).

Соотношение между численностью всего городского и сельского населения по Самарской области (2015 - 2017 гг.) – 80% и 20%, соответственно; в 2029-2031 гг. прогнозируется 81% городского и 19% сельского населения. С 2015 по 2031 гг. по области прогнозируется уменьшение городского населения на 101270 человек, уменьшение сельского населения на 56809 человек.

По среднему варианту прогноза доли основных возрастных групп в общей численности населения Самарской области в 2015 г. и 2031 г. доля населения младше
Трудоспособного возраста должна составлять 15,9 % и 15,5%, соответственно; трудоспособного 58,4% и 54,5%, соответственно; старше трудоспособного 25,7% и 24,5%, соответственно. По РФ по среднему варианту прогноза доли основных возрастных групп, в общей численности населения в 2015 г. и 2031 г. доля населения младше трудоспособного возраста должна составлять 18 % и 17,6%, соответственно; трудоспособного - 57,4% и 53,7%, соответственно; старше трудоспособного - 24,6% и 28,7%, соответственно.

Прогноз по среднему варианту коэффициента рождаемости населения в Самарской области в 2015 г. на уровне 12,6 (в 2016 г. – 12,1; в 2030 г. – 9); коэффициента смертности в 2015 г. на уровне 14,3 (в 2016 г. - 14,4; в 2030 г. на уровне 15,7); коэффициента естественного прироста в 2015 г. на уровне «-1,7» (в 2016 г. «- 1,9», в 2030 г. на уровне «-7»).

Прогноз по среднему варианту коэффициента рождаемости населения в РФ 2015 г. на уровне 13,1 (в 2016 г. – 12,8; в 2030 г. – 9,6); коэффициента смертности в 2015 г. на уровне 12,5 (в 2016 г. - 12,5; в 2030 г. на уровне 13,0); коэффициента естественного прироста в 2015 г. на уровне 0,6 (в 2016 г. - 0,4, в 2030 г. на уровне «-3,4»).

Прогноз ожидаемой продолжительности жизни в Самарской области по среднему варианту на 2015 г. у всего населения – 70,7 лет, у мужчин – 64,8 лет, у женщин – 76,4 лет; на 2030 г. – у всего населения 73,4 лет, у мужчин – 67,6 лет, у женщин – 78,7 лет.

Прогноз ожидаемой продолжительности жизни в РФ по среднему варианту на 2015 г. у всего населения – 71,6 лет, у мужчин - 65,9 лет, у женщин – 77,2 лет; на 2030г. у всего населения - 75,3 лет, у мужчин - 70,5 лет, у женщин – 79,8 лет.
7.1. Структура государственного регулирования и надзора в сфере природопользования и охраны окружающей среды

Структура государственного регулирования и надзора в сфере природопользования и охраны окружающей среды на территории Самарской области основывается на Конституции Российской Федерации, Федеральном законе от 06.10.1999 № 184-ФЗ «Об общих принципах организации законодательных (представительных) и исполнительных органов государственной власти субъектов Российской Федерации», Федеральном законе от 10.01.2002 № 7-ФЗ «Об охране окружающей среды», Законе Самарской области от 06.04.2009 № 46-ГД «Об охране окружающей среды и природопользовании в Самарской области», Законе Самарской области от 06.04.2010 № 36-ГД «О наделении органов местного самоуправления отдельными государственными полномочиями в сфере охраны окружающей среды», других нормативных правовых актах.

Общая схема структуры управления природопользованием и охраной окружающей среды на территории Самарской области по состоянию на конец 2015 года представлена на схеме 7.1.1. Субъектами осуществления государственного регулирования и надзора в сфере природопользования и охраны окружающей среды на территории Самарской области в 2015 году являлись территориальные управления соответствующих уполномоченных федеральных органов, а также министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области, департамент охоты и рыболовства Самарской области, государственная инспекция строительного надзора Самарской области, органы местного самоуправления Самарской области.

Органом исполнительной власти Самарской области, осуществляющим разработку и реализацию основных направлений региональной политики в области природопользования и охраны окружающей среды, в сфере лесного хозяйства в целях повышения уровня жизни населения Самарской области и обеспечивающим в пределах своей компетенции государственное управление в сфере использования, воспроизводства, охраны природных ресурсов и окружающей среды, лесов Самарской области, обеспечения экологической безопасности населения, а также координирующим в соответствии с действующим законодательством деятельность органов исполнительной власти Самарской области в данной сфере является министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области (Министерство).

Полномочия и структура Министерства определены Положением о Министерстве лесного хозяйства, охраны окружающей среды и природопользования Самарской области, утвержденным постановлением Правительства Самарской области от 09.10.2013 № 528.

В ведении Министерства находятся следующие основные вопросы:

- нормативное правовое регулирование в сфере лесного хозяйства, охраны окружающей среды и природопользования на территории области;
- разработка и реализация природоохранных мероприятий, предусмотренных законом Самарской области об областном бюджете на очередной финансовый год и плановый период, в также государственных программах Самарской области и ведомственных целевых программ в сфере охраны окружающей среды и экологической безопасности;
- реализация государственной политики в области охраны окружающей среды, оценка и прогнозирование состояния окружающей природной среды;
Структура государственного регулирования и надзора (контроля) в сфере природопользования и охраны окружающей среды на территории Самарской области в 2015 году

Территориальные органы федеральной исполнительной власти

Управление Федеральной службы по надзору в сфере природопользования (Росприроднадзор) по СО*)

ФГБУ Приволжское управление по гидрометеорологии и мониторингу окружающей среды

Управление Федеральной службы по ветеринарному и фитосанитарному надзору (Россельхознадзор) по СО*)

Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор) по СО*)

Управление федеральной службы государственной регистрации, кадастра и картографии по СО*)

Отдел геологии и лицензирования по Самарской области (Самаранедра)

Отдел водных ресурсов по Самарской области Нижне-Волжского бассейнового водного управления Росводресурсов

Средневолжское территориальное управление Росрыболовства

ОРганы исполнительной власти Самарской области

Правительство Самарской области

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области

Департамент охоты и рыболовства Самарской области

Государственная инспекция строительного надзора СО*)

Органы местного самоуправления Самарской области

СО*) — Самарская область
осуществление разрешительной деятельности в области охраны окружающей среды, организация и проведение государственной экологической экспертизы объектов регионального уровня;
осуществление государственного экологического надзора в пределах предоставленных полномочий;
осуществление лесного планирования и организация использования, охраны, защиты и воспроизводства лесов;
управление в области использования и охраны водных объектов в пределах установленных полномочий;
государственное регулирование отношений недропользования в пределах установленных полномочий;
mобилизационная подготовка в установленной сфере деятельности.
В 2015 году министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области направляло свою деятельность, в первую очередь, на практическую реализацию указанных основных вопросов деятельности.

7.2. Совершенствование нормативной правовой базы Самарской области в сфере лесного хозяйства, охраны окружающей среды и природопользования

Значительная работа была проведена в 2015 году по совершенствованию нормативной правовой базы Самарской области в сфере охраны окружающей среды и природопользования.

В соответствии с Законами Самарской области от 06.04.2015 № 31-ГД и от 30.12.2015 № 143-ГД, Закон Самарской области «Об охране окружающей среды и природопользовании в Самарской области» был дополнен комплексом новых полномочий органов исполнительной власти Самарской области в сфере обращения с отходами производства и потребления, а также в части создания и ведения фондов геологической информации Самарской области, установления порядка и условий использования геологической информации о недрах.

В Закон Самарской области от 16.07.2009 № 91-ГД «О порядке пользования участками недр местного значения на территории Самарской области» были внесены изменения в части уточнения оснований возникновения права пользования участками недр местного значения, а также критериев отнесения тех или иных участков недр к участникам недр местного значения.

В 2015 году был внесен ряд изменений в Закон Самарской области от 07.11.2007 № 131-ГД «О регулировании лесных отношений на территории Самарской области». В вышеуказанный нормативный правовой акт Законом Самарской области от 06.10.2015 № 87-ГД были внесены изменения технического характера, в соответствии с которыми проект договора купли-продажи лесных насаждений для собственных нужд гражданина должен подготавливаться уполномоченными органами на основании не примерного, а типового договора купли-продажи лесных насаждений. В декабре 2015 года в вышеуказанный закон были также внесены изменения, в соответствии с которыми государственное казённое учреждение Самарской области «Самарские лесничества» наделено закреплённым за Министерством полномочием по заключению с гражданами договоров купли-продажи лесных насаждений (древесины) для собственных нужд, что позволит значительно сократить сроки проведения соответствующей процедуры.

Помимо совершенствования Законов Самарской области, необходимо отметить регулярное внесение изменений в Положение о Министерстве, утверждённое постановлением Правительства Самарской области от 09.10.2013 № 528, касающихся уточнения полномочий данного органа исполнительной власти Самарской области. Так, в 2015 году по данному основанию были разработаны и приняты постановления Правительства Самарской области от 02.07.2015 № 393, от 25.09.2015 № 605.
В рамках обеспечения надлежащего нормативного правового регулирования оказания Министерством государственных услуг и в связи с изменением федерального законодательства приказом Министерства от 24.09.2015 № 386 были внесены изменения в приказ от 15.11.2013 № 441 «Об утверждении Административного регламента исполнения Министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области государственной функции по осуществлению регионального государственного экологического надзора (за исключением случаев, если при строительстве, реконструкции, капитальном ремонте объектов капитального строительства предусмотрено осуществление государственного строительного надзора) при осуществлении хозяйственной и иной деятельности, за исключением деятельности с использованием объектов, подлежащих федеральному государственному экологическому надзору».

В целях обеспечения поддержания региональной нормативной правовой базы в актуальном состоянии на регулярной основе осуществляется текущий мониторинг правоприменения в сфере охраны окружающей среды с учётом положений Методики осуществления мониторинга правоприменения в Российской Федерации, утверждённой постановлением Правительства Российской Федерации от 19.08.2011 № 694.

Важным, носящим обобщающий характер, направлением деятельности Министерства является исполнение расходных обязательств Министерства за 2015 год. Информация об исполнении бюджетных ассигнований в рамках государственных программ в сфере лесного хозяйства, охраны окружающей среды и природопользования, а также межбюджетных трансфертов федерального бюджета представлена ниже.

Общий объем бюджетных ассигнований, предусмотренный Министерству на 2015 год, составил 795 279,51 тыс. рублей, в том числе 619 713,81 тыс. рублей за счёт средств бюджета Самарской области, 175 565,7 тыс. рублей за счёт межбюджетных трансфертов федерального бюджета. Из указанной суммы доля бюджетных ассигнований, предусмотренных на реализацию мероприятий государственных программ, составила 84,3% (670 884,15 тыс. рублей средств областного и федерального бюджетов).

7.3. Реализация государственных программ Самарской области в сфере лесного хозяйства, охраны окружающей среды и природопользования

Основной задачей, стоящей перед отраслью в 2015 году, являлось выполнение всех лесохозяйственных мероприятий, установленных Лесным планом Самарской области.

На реализацию программных мероприятий в 2015 году выделено финансирование в общем объеме 459 513,982 тыс. рублей, в том числе:
- средства федерального бюджета - 141404,414 тыс. рублей;
- средства областного бюджета – 318109,568 тыс. рублей.

По итогам 2015 года освоение бюджетных средств составило 96% (запланировано - 478873,066 тыс.руб.; освоено - 459513,982 тыс.руб.), в том числе:
• средств федерального бюджета – 141404,414 тыс. рублей;
• средств областного бюджета – 318109,568 тыс. рублей.
В ходе реализации программы в 2015 году были достигнуты следующие результаты:
• проведены работы по лесовосстановлению на площади 1104,6 га;
• выполнен агротехнический уход за лесными культурами на площади земель лесного фонда Самарской области 10022,4 га, на территории иных земель городского округа Тольятти - 753,2 га;
• произведено дополнение лесных культур на площади земель лесного фонда Самарской области 966,6 га, на территории иных земель городского округа Тольятти - 122,3 га;
• подготовлена почва для будущего года посадки лесных культур на площади 495,8 га;
• проведен уход за молодняками на площади 889,6 га;
• осуществлен уход за объектами лесного семеноводства на площади 29,6 га;
• лесопатологическое обследование лесонасаждений Самарской области на площади 20917 га;
• произведена обработка лесных насаждений от вредителей леса на площади 8122,9 га;
• выполнены санитарно-оздоровительные мероприятия на площади 2,5 тыс. га;
• произведена расчистка неликвидных лесных участков, пострадавших в результате последствий лесных пожаров, на площади 105,1 га;
• проведена уборка от захламленности лесных участков, расположенных вдоль автомобильной дороги федерального значения Самара-Тольятти (М5) на площади 74 га;
• проведены противопожарные профилактические мероприятия на площади 582,8 тыс. га;
• проведены лесоустроительные работы на территории 3 лесничеств Самарской области общей площадью 83,85 тыс. га;
• поставлены на кадастровый учет лесные участки, расположенные в границах городского округа Тольятти, общей площадью 1196,4 га;
• разработаны проекты лесохозяйственных регламентов 6 лесничеств Самарской области, на которых произведены лесоустроительные работы в 2014 году;
• проведено изъятие и постановка на государственный кадастр лесных участков для дальнейшего предоставления их в аренду на площади 36,1 га;
• 14 специалистов лесного хозяйства прошли повышение квалификации.
В 2015 году Министерству были предусмотрены бюджетные ассигнования в размере 64 154,42 тыс. рублей, в том числе средства областного бюджета - 64 066,62 тыс. рублей, средства федерального бюджета – 87,8 тыс. рублей. Кассовый расход – 54 009,2 тыс. рублей, уровень исполнения 84,1%.
По итогам реализации программных мероприятий в 2015 году площадь особо охраняемых природных территорий (далее – ООПТ), включенных в государственный кадастр ООПТ, составила 1,036 тыс. га. Всего по состоянию на 01.01.2016 площадь ООПТ регионального значения, оформленных в соответствии с действующим законодательством, составила 90,3 тыс. га. В рамках реализации программы были выполнены следующие мероприятия:
• произведен сбор исходных данных для подготовки проекта схемы охранных зон ООПТ, разработаны критерии выделения охранных зон, типовые режимы охраны,
проведено обследование десяти модельных участков, подготовлен проект схемы охранных зон;
• произведен сбор имеющейся опубликованной фондовой и картографической информации о распространении видов, включенных в Красную книгу Самарской области, произведена оценка численности растений и животных, занесенных в Красную книгу Самарской области за 2013—2015 гг.;
• разработан радиационно-гигиенический и экологический паспорт Самарской области;
• в целях образования, просвещения и формирования экологической культуры населения проведено издание региональной экологической газеты «Живая вода», выпущено 3 номера с общим тиражом 9000 экземпляров;
• обеспечена доступность информации о состоянии окружающей среды;
• на 6 участках карстовых и оползневых процессов проводился мониторинг опасных экзогенных процессов;
• выполнена оценка численности редких, экологически значимых видов птиц, занесенных в Красную книгу Российской Федерации и Красную книгу Самарской области: сокол сапсан (общая численность оценивается в 1-3 гнездящиеся пары), большой подорлик (порядка 20 пар), орлан белохвост (численность оценивается в 90-124 пары) (за счет средств федерального бюджета).
На 2015 год Министерству предусмотрены бюджетные ассигнования в размере 109 771,29 тыс. рублей, в том числе средства областного бюджета 76 736,59 тыс. рублей, средства федерального бюджета – 33 034,70 тыс. рублей. Кассовый расход составил 78 988, 68 тыс. рублей (в том числе областной бюджет – 45 953,98 тыс. рублей (59,8%), федеральный бюджет – 33 034,7 тыс. рублей (100,0%)), уровень исполнения – 71,9 %.
В целях защиты от подтопления и затопления населенных пунктов продолжены работы по ремонту гидротехнических сооружений пруда на балке Таловрин Дол муниципального района Большечерниговский. Министерству на данное мероприятие направлены субсидии в объеме 13845,11 тыс. рублей, в том числе средства федерального бюджета, выделенные в рамках Федеральной целевой программы «Развитие водохозяйственного комплекса Российской Федерации в 2012 – 2020 годах», 6 314,6 тыс. рублей, средства областного бюджета – 7 530,51 тыс. рублей. По итогам реализации программных мероприятий в 2015 году:
• начаты работы по берегоукреплению реки Пестравочки в с. Пестравка муниципального района Пестравский Самарской области и берегоукреплению Куйбышевского водохранилища в районе очистных сооружений сельского поселения Луначарского муниципального района Ставропольский Самарской области;
• выполнены работы по проектированию расчистки русла реки Большой Иргиз в районе нефтебазы с. Большая Глушица муниципального района Большеглушицкий Самарской области и получено положительное заключение государственной экспертизы;
• завершена расчистка русла реки Чапаева у с. Сухая Вязовка и с. Яблоновский Овраг м. р. Волжский общей протяженностью 7,967 км, что позволило защитить от подтопления и затопления 516 домов, в которых проживает 1520 человек;
• завершена расчистка русла реки Сызранка у с. Новый Ризадей муниципального района Сызранский общей протяженностью 4,7 км (экологическая реабилитация) (за счет средств федерального бюджета);
• завершена расчистка русла реки Талыш у с. Султангуловский муниципального района Похвистневский общей протяженностью 3,55 км, что позволило защитить от подтопления и затопления 76 домов, в которых проживает 133 человека (за счет средств федерального бюджета);
• начаты работы по определению границ водоохранных зон и прибрежных защитных полос реки Сок и реки Самары в пределах Самарской области (за счет средств федерального бюджета).

В 2015 году Министерству были предусмотрены бюджетные ассигнования в размере 17 085,38 тыс. рублей. Кассовый расход составил 17 085,00 тыс. рублей, уровень кассового исполнения – 100,0 %. Средства направлены на оплату выполненных в 2014 году предпроектных работ, по разработке общей концепции проекта рекультивации техногенно деградированных территорий в районе с.п. Рождествено, с учетом всех технологических, градостроительных, технико-экономических ограничений и показателей.

На 2015 год Министерству были предусмотрены бюджетные ассигнования в размере 1000,00 тыс. рублей. Средства освоены в полном объеме. Реализовано мероприятие по внедрению технологии автоматизированного электронного обслуживания в сфере природопользования, лесного хозяйства и охраны окружающей среды Самарской области в части расширения функционала ЕСАВД «ПроВЭД» для обеспечения реализации предоставления услуг по сдаче отчетности и лесных деклараций физическими и юридическими лицами в Министерство.

7.4. Плата за негативное воздействие на окружающую среду

Важным элементом государственного регулирования в области охраны окружающей среды является экономическое регулирование в виде платежей за негативное воздействие на окружающую среду. Они носят компенсационный характер и взимаются за предоставление субъектам хозяйственной и иной деятельности, оказывающей негативное воздействие на окружающую среду, права производить в пределах допустимых нормативов выбросы и сбросы загрязняющих веществ, размещать отходы и оказывать иные виды негативного воздействия.

Управление Росприроднадзора по Самарской области, исполняя государственную функцию администратора доходов бюджетов бюджетной системы Российской Федерации, в рамках бюджетных полномочий осуществляет учет и контроль за правильностью исчисления, полнотой и своевременностью осуществления платежей за негативное воздействие на окружающую среду. Данные о начисленной и поступившей плате за негативное воздействие на окружающую среду по видам негативного воздействия представлены в таблице 7.4.1.

Таблица 7.4.1

<table>
<thead>
<tr>
<th>Виды негативного воздействия</th>
<th>Начисленная плата за 4 кв. 2014 - 1-3 кв. 2015 г., руб.</th>
<th>Поступившая плата за НВОС за 2015 г., руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Выброс загрязняющих веществ в атмосферный воздух от стационарных установок</td>
<td>192 155 185,11</td>
<td>191 957 929,67</td>
</tr>
<tr>
<td>Выброс загрязняющих веществ в</td>
<td>4 550 031,53</td>
<td>12 310 013,73</td>
</tr>
</tbody>
</table>
План по сбору платежей за негативное воздействие на окружающую среду выполнен в 2015 году на 120,9%.
Наибольшую долю в структуре платежей за негативное воздействие на окружающую среду составили платежи за размещение отходов – 54,7%, платежи за сбросы загрязняющих веществ в водные объекты составила 17,7%, плата за выброс загрязняющих веществ в атмосферный воздух от стационарных установок - 13,3 %, плата за выброс загрязняющих веществ в атмосферный воздух от передвижных источников составила 1,7% всех платежей.

7.5. Государственная экологическая экспертиза

Управление Федеральной службы по надзору в сфере природопользования (Росприроднадзора) по Самарской области (далее – Управление) осуществляет организацию и проведение в порядке, установленном законодательством Российской Федерации, государственной экологической экспертизы федерального уровня. В течение 2015 года Управлением была организована и проведена государственная экологическая экспертиза федерального уровня по 8 объектам, выдано 7 положительных заключений.

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области (Министерство) осуществляет полномочия по организации и проведению государственной экологической экспертизы объектов регионального уровня. Основная деятельность в этой сфере связана с организацией и проведением государственной экологической экспертизы объектов регионального уровня, а также с экологической оценкой намечаемой деятельности.

В 2015 году Министерством были проведены 5 государственных экологических экспертиз по материалам обоснования объемов изъятия (лимита и квот добычи) на территории Самарской области следующих видов животных: барсука, косули сибирской, лося, оленя благородного и оленя пятнистого.

Проведена государственная экспертиза материалов комплексного экологического обследования и подготовлено эколого-экономическое обоснование для признания правового статуса особо охраняемой природной территории регионального значения – памятника природы регионального значения «Овраг Стерех».

7.6. Государственный экологический надзор

Государственный экологический надзор на территории Самарской области в 2015 году осуществлялся:
по объектам, подлежащим федеральному государственному экологическому надзору, – территориальными органами федеральных надзорных структур: в части обеспечения надзора в сфере природопользования – Управлением Росприроднадзора по Самарской области, в части обеспечения санитарно-эпидемического надзора – Управлением Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (далее - Роспотребнадзор) по Самарской области (далее – Управление Роспотребнадзора по Самарской области);
по объектам, не подлежащим федеральному государственному экологическому надзору, – министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области (далее - Министерство). Министерство
осуществляет региональный государственный экологический надзор в области охраны окружающей среды только в части рассмотрения дел об административных правонарушениях. В соответствии с Законом Самарской области от 06.04.2010 № 36-ГД «О наделении органов местного самоуправления отдельными государственными полномочиями в сфере охраны окружающей среды» с апреля 2010 года отдельными государственными полномочиями в сфере охраны окружающей среды также наделены органы местного самоуправления Самарской области.

Управлением Росприроднадзора по Самарской области (далее - Управление) за 2015 год было проведено 350 проверок природопользователей, из них плановых – 59, внеплановых - 123. Проверено 182 хозяйствующих субъектов, 2992 объекта контроля, 224 разрешительных документа.

Всего Управлением было рассмотрено 448 административных дел, из них по материалам проверок Управления - 224. Привлечено к административной ответственности всего 411 лиц (по материалам проверок Управления - 214). Из них всего 143 юридических лиц (по материалам проверок Управления - 214), 153 должностных лиц (по материалам проверок Управления - 88), 115 граждан (по материалам проверок Управления - 47). Внесено 40 представлений на юридических лиц.

Общая сумма предъявленная по штрафам за отчетный период – 15046,70 тыс. рублей. Сумма взысканная по штрафам в результате контрольно-надзорной деятельности за отчетный период – 13335,90 тыс. рублей.

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области в 2015 году осуществляло государственный экологический надзор на объектах хозяйственной и иной деятельности, независимо от форм собственности (за исключением объектов, подлежащих федеральному государственному экологическому надзору). В процессе выполнения функции по государственному надзору в сфере охраны окружающей среды и природопользования, в целях обеспечения соблюдения природопользователями требований природоохранных законодательства, Управлением государственного экологического надзора (далее - УГЭН) Министерства проведено в 2015 году 194 мероприятия. Среди них – плановые проверки 38 шт., внеплановые проверки – 3 шт., обследования ООПТ – 53 шт., обследования линий связи и электропередачи с целью предотвращения гибели птиц – 8 шт., внеплановые мероприятия по контролю (выезды с прокуратурой, полицией и по заявлениям граждан) – 92 шт.

За 2015 год УГЭН вынесено 797 постановлений о привлечении к административной ответственности на сумму 15 527,5 тыс. рублей. Привлечено судами к административной ответственности по 104 протоколам по ч.1 ст.20.25 на сумму 7 613 тыс. рублей, по 17 протоколам по ст.19.6 на сумму 52 тыс. рублей и по прочим – на 11 тыс. рублей. Инспекторами управления рассмотрено 356 обращений, из них – 64 с выездом на место предполагаемых противозаконных действий.

Согласно сведениям представленным органами местного самоуправления по результатам работы за 2015 год при исполнении переданных полномочий по осуществлению регионального государственного надзора были достигнуты следующие результаты:

- количество проведенных плановых проверок в отчетный период составило 936 шт.,
- количество проведенных внеплановых проверок составило 286 шт., из них по контролю исполнения предписаний – 198 шт., по обращению граждан – 88 шт.,
общее количество контрольно-надзорных мероприятий органами местного самоуправления за 2015 год с учетом рейдов и обследований составило 2516 шт., общее количество составленных протоколов – 790 шт.

В ведении министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области находится осуществление государственного надзора за геологическим изучением, рациональным использованием и охраной недр в отношении участков недр местного значения.

В рамках осуществления надзора министерством принимаются меры по выявлению и пресечению фактов незаконной добычи общераспространенных полезных ископаемых (ОПИ) – песка строительного, глины, строительного камня и т.д.

В соответствии с пунктом 18 Постановления Правительства Российской Федерации от 12.05.2005 №293 «Об утверждении Положения о государственном надзоре за геологическим изучением, рациональном использовании и охраной недр» в рамках осуществления государственного геологического надзора специалистами управления государственного экологического надзора министерства проведена 1 плановая выездная проверка, 2 внеплановые документарные проверки, по результатам которых составлено 3 протокола об административных правонарушениях (ч. 1 ст. 7.3. КоАП РФ, ч. 2 ст. 7.3. КоАП РФ, ч. 1 ст. 19.4.1. КоАП РФ).

Всего в результате проведенной работы по соблюдению законодательства о недропользовании управлением государственного экологического надзора министерства составлено 47 протоколов об административных правонарушениях, по результатам рассмотрения которых вынесены постановления о назначении административных штрафов.

Всего в 2015 году министерством рассмотрено 62 дела об административных правонарушениях.

Из них:
- в 5 случаях вынесены постановления о прекращении дел;
- в 57 случаях вынесены постановления о штрафе.

Из 57 дел, по результатам которых вынесены постановления о штрафе:
- 47 дел возбуждено министерством;
- 9 дел возбуждено органами полиции;
- 1 дело возбуждено прокуратурой.

Из 57 дел, по результатам которых вынесены постановления о штрафе:
- 36 дел возбуждено по ч. 1 ст. 7.3. КоАП РФ;
- 21 дело возбуждено по ч.2 ст. 7.3. КоАП РФ.

Субъектный состав правонарушений:
- 25 дел возбуждены в отношении граждан;
- 12 дел возбуждены в отношении должностных лиц;
- 20 дел возбуждены в отношении юридических лиц.

По результатам рассмотрения дел об административных правонарушениях виновным лицам назначены административные штрафы на общую сумму 5 104 500,00 рублей (с учетом решений по обжалованию в судебном порядке постановлений министерства).

Специалистами министерства в течение года проведено 26 рейдовых обследований, 16 из которых осуществлены совместно с органами полиции.

Также, специалистами управления государственного экологического надзора было рассмотрено 81 обращение, содержащее сведения о нарушении требований законодательства о недрах, поступивших от граждан, организаций, органов исполнительной власти и правоохранительных органов.

Вместе с тем, управлением государственного экологического надзора организована и ведется работа по выявлению вреда, причиненного окружающей среде в результате самовольного пользования недрами.
В целях обеспечения расчета и последующего взыскания с виновных лиц ущерба, нанесенного окружающей среде в результате незаконного недропользования, министерством в 2015 году в 19 случаях привлекались специалисты-маркшейдеры.

В 2015 году был произведен расчет вреда по 12 случаям незаконного пользования недрами на общую сумму 12 995 337,72 руб. (в отношении лиц, вина которых доказана).

Кроме того, с 2015 года к работе по геологическому надзору привлечены специалисты АО «РКЦ «Прогресс» в целях использования данных дистанционного зондирования Земли (снимков с космических аппаратов «Ресурс-П»), проведена инвентаризация и получены координаты всех мест незаконной добычи ОПИ в Самарской области, данные переданы в АО «РКЦ «Прогресс» для осуществления мониторинга.

7.7. Государственная политика в сфере сохранения биоразнообразия и развития сети особо охраняемых природных территорий Самарской области

В Самарской области сформирована уникальная сеть различных особо охраняемых природных территорий (ООПТ). Ее основу составляют ООПТ федерального значения: Жигулевский государственный природный биосферный заповедник им. И.И. Спрыгина (23,157 тысячи гектаров), Национальный парк «Самарская Лука» (127,186 тысячи гектаров), Национальный парк «Бузулукский бор» (51,288 тысячи гектаров на территории Самарской области). Государственная политика в сфере сохранения биоразнообразия и развития сети особо охраняемых природных территорий федерального значения осуществляется Управлением Росприроднадзора по Самарской области.

В 2015 году в ходе проведения надзорных мероприятий Росприроднадзором выявлены следующие основные виды нарушений:

- нарушения Правил пожарной безопасности в лесах на ООПТ федерального значения;
- нарушения Санитарных правил в лесах на ООПТ федерального значения.

Выданы 3 предписания об устранении нарушений Правил пожарной безопасности в лесах на ООПТ федерального значения. Все они выполнены в установленный срок.

Постановлением Правительства Российской Федерации от 19.02.2015 № 138 утверждены Правила создания охранных зон отдельных категорий особо охраняемых природных территорий, установления их границ, определения режима охраны и использования земельных участков и водных объектов в границах таких зон. Исполнение полномочий по созданию охранных зон существующих ООПТ регионального значения в Самарской области министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области осуществлялось в рамках государственной программы «Охрана окружающей среды Самарской области на 2014 – 2020 годы», утвержденной постановлением Правительства Самарской области от 27.11.2013 № 668. Финансирование работ по созданию охранных зон ООПТ регионального значения, установлению их границ, определению режима охраны и использования земельных участков и водных объектов в границах таких зон составило в 2015 году 945,3 тыс.
рублей. Были разработаны критерии выделения охранных зон ООПТ регионального значения, типовые режимы охраны, проведено обследование десяти модельных участков. Разработана схема охранных зон по административно-территориальным образованиям Самарской области, включающая в себя схемы границ охранных зон и описания каждой охранный зон ООПТ регионального значения. Принято постановление Правительства Самарской области об упразднении 4-х памятников природы регионального значения «Тополь вековой», «Нефтяная скважина № 8», «Нефтяная скважина № 10», «Ново-Усмановская сероводородная вода». Реорганизован памятник природы регионального значения «Муранский бор» в форме изменения границ, внесены соответствующие изменения в положение о данном ООПТ. В июле 2015 года принято постановление Правительства Самарской области об утверждении положений 3-х ООПТ регионального значения - Самарское устье, Куйбышевский ботанический сад, Преображенная степь.

По состоянию на 01.01.2016 площадь ООПТ регионального значения, оформленных в соответствии с действующим законодательством, составляет 90,3 тыс.га или 1,7% от площади региона (208 памятников природы). Годовой показатель результативности деятельности Министерства составляет 89,3 тыс.га, то есть показатель перевыполнен. Доля площади территории Самарской области, занятой особо охраняемыми природными территориями (в том числе и федерального значения), в общей площади территории области, составляет 5,4%. Завершены работы по внесению в государственный кадастр недвижимости сведений о зонах с особыми условиями использования территорий по всем действующим 208 ООПТ регионального значения. В 2015 году Министерством рассмотрено более 2,2 тысяч запросов юридических и физических лиц и предоставлены сведения об обременении (отсутствии обременения) земельного участка особо охраняемыми природными территориями регионального значения.

В процессе реализации программных мероприятий в Самарской области в 2015 году достигнуты следующие результаты.

В целях обеспечения и координации работ по ведению государственного кадаstra ООПТ регионального и местного значения выполнена подготовка землеустроительных дел по составлению карт (планов) границ ООПТ регионального значения, положения о которых были утверждены в 2014 году. Осуществлено наполнение всей полученной в 2010-2015 годах информацией кадаstra ООПТ регионального значения, заполнена база данных «ГИС Природопользование». Финансирование работ, направленных на решение данной задачи составило 319 тыс. рублей.

Обеспечение ведения Красной книги Самарской области профинансировано в размере 500 тыс. рублей. Были выполнены работы по сбору сведений о распространении, изменении численности видов, занесенных в Красную книгу, оценке угрозы, разработке предложений о включении/исключении видов в Красную книгу, заполнению и ведению кадаstra видов, занесенных в Красную книгу Самарской области с применением геоинформационных технологий.

7.8. Государственное регулирование и надзор в сфере недропользования и охраны недр

Надзор за геологическим изучением, рациональным использованием и охраной недр на территории Самарской области осуществляется Управлением Росприроднадзора по Самарской области. В 2015 году отделом геологического надзора и охраны недр Управления Росприроднадзора по Самарской области было проведено 113 проверок (из них плановых - 15; внеплановых - 98). В целом проверено соблюдение условий 18 лицензий, что составляет 3,4 % от их общего количества (531). Выведено 81 нарушение, выдано 89 предписаний. В рамках ведения производств по делам об административных правонарушениях установлено 3 факта безлицензионного пользования недрами.
Привлечены к административной ответственности 69 юридических лиц (в т.ч. по ст. 19.5 КоАП РФ - 58), 32 должностных, 5 физических лиц. Общая сумма наложенных штрафов составила 4478,0 тыс. рублей, взыскано 4369,5 тыс. рублей.

Из 98 внеплановых проверок 80 проведены по выполнению ранее выданных предписаний. Установлено исполнение 161 предписания (с учетом ранее выданных в 2013-2015 годах).

Основными видами нарушений, выявленных при проведении проверок, являются: на объектах нефтедобывающих предприятий:
- отставание по проведению геологоразведочных работ, от графика бурения поисковых, разведочных, эксплуатационных скважин;
- отклонение от утвержденных проектами уровней добычи нефти;
- невыполнение проектных решений, условий лицензионных соглашений в части использования ПНГ;
- обустройство месторождений с нарушением проектных решений;
при добыче подземных вод:
- отсутствие оценки запасов;
- отсутствие обустройства зоны санитарной охраны 1 пояса скважин;
- отсутствие расходно-измерительной аппаратуры;
- отсутствие оформленных документов на право пользования земельными участками для размещения скважин;
- при добыче твердых полезных ископаемых:
- начало разработки участков карьера без снятия плодородного слоя;
- отсутствие ограждения карьеров;
- отсутствие программ мониторинга состояния геологической среды;
- отсутствие горнотехнических актов.

Можно привести следующие примеры эффективности выполнения предписаний.
- Устранены нарушения ст. 11, 23 ФЗ «О недрах» (безлицензионное пользование недрами) ОАО «Трансаммиак», МУП «Красноярское ЖКХ», ОАО МСЗ «Кошкинский», ЗАО «СККМ».
- Проведена оценка запасов подземных вод (МУП «ВКХ г.о. Похвистнево», ОАО «Волжабурмаш», ФКП «Чапаевский механический завод»).
- Оформлены документы на право пользования земельными участками (ОАО «Водоканал»).
- Выполнены отчеты по ведению мониторинга подземных вод (ООО «ПромРесурс», ООО «Хилковское коммунальное хозяйство»).

На 2016 год запланированы следующие приоритетные направления деятельности Управления Росприроднадзора по Самарской области в сфере недропользования охраны недр:
контроль за выполнением условий лицензий на участки недр для разведки и добычи питьевых подземных вод, углеводородного сырья, твердых полезных ископаемых;
контроль за реализацией программ по утилизации попутного нефтяного газа нефтегазодобывающими предприятиями;
пресечение фактов безлицензионного пользования недрами и привлечение нарушителей к ответственности;
контроль за своевременным исполнением предписаний, взысканием наложенных штрафов;
повышение эффективности взаимодействия с органами государственной власти, правоохранительными и другими контрольно-надзорными органами.

В связи с передачей полномочий субъектам Российской Федерации по распоряжению участками недр, содержащими подземные воды, которые используются для целей питьевого и хозяйственно-бытового водоснабжения или технологического обеспечения водой объектов промышленности либо объектов сельскохозяйственного назначения, и объем добычи которых составляет не более 500 куб. метров в сутки, Министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области в 2015 году разработаны следующие нормативные правовые акты:
постановление Правительства Самарской области от 14.08.2015 № 513 «О внесении изменений в постановление Правительства Самарской области от 03.10.2012 № 496 «Об утверждении Порядка оформления, государственной регистрации и выдачи лицензий на пользование участками недр местного значения на территории Самарской области, внесения в лицензии изменений и дополнений, а также переоформления таких лицензий»;
приказ министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области от 06.07.2015 № 282 «Об утверждении порядка предоставления участков недр местного значения для геологического изучения в целях поисков и оценки подземных вод, для добычи подземных вод или для геологического изучения в целях поисков и оценки и добычи подземных вод, используемых для питьевого и хозяйственно-бытового водоснабжения или технологического обеспечения водой объектов промышленности либо объектов сельскохозяйственного назначения»;
приказ министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области от 01.09.2015 № 349 «О внесении изменений в приказ министерства природопользования, лесного хозяйства и охраны окружающей среды Самарской области от 28.01.2010 № 44 «Об утверждении порядка осуществления собственниками земельных участков, жилищных сооружений, землепользователями и арендаторами земельных участков в их границах без применения взрывных работ добычи общераспространенных полезных ископаемых, не числящихся на государственном балансе, и строительства подземных сооружений для своих нужд на глубину, до пяти метров, а также устройства и эксплуатации бытовых колодцев и скважин на первый водоносный горизонт, не являющийся источником централизованного водоснабжения на территории Самарской области»;
приказ министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области от 30.09.2015 № 402 «Об экспертной комиссии по проведению государственной экспертизы запасов полезных ископаемых, геологической, экономической и экологической информации о предоставляемых в пользование участках недр местного значения на территории Самарской области».

На 01.01.2015 министерству лесного хозяйства, охраны окружающей среды и природопользования Самарской области был передан реестр из 530 лицензий, выданных на право пользования участками недр, содержащих подземные воды, объем добычи которых составил менее 500 кубических метров в сутки. К концу 2015 года реестром учтено 558 лицензий.
Государственное регулирование отношений в сфере недропользования невозможно без геологической информации, полученной в результате выполнения геологоразведочных работ и прошедших государственную экспертизу запасов. В 2015 году экспертной комиссией по запасам полезных ископаемых, созданной при министерстве, в рамках предоставления государственной услуги рассмотрено и принято положительное решение по 4 отчетам (3 по обширно распространенным полезным ископаемым и 1 по подземным водам). Результаты геологоразведочных работ, выполненных за счет средств недропользователей, обеспечили прирост запасов песка строительного (карьерного) на 6 277,4 тыс. кубических метров, подземных вод питьевого качества на 0,12 тыс. кубических метров в сутки.

Государственная система лицензирования пользования участками недр местного значения на территории Самарской области обеспечивается министерством в порядке предоставления двух государственных услуг.

В рамках оказания государственной услуги по предоставлению права пользования участками недр местного значения в 2015 году министерством выдано 19 лицензий (в том числе 15 на подземные воды).

В рамках оказания государственной услуги по внесению изменений в лицензии, их переоформлению, продлению срока действия в 2015 году недропользователям предоставлено 45 услуг (в том числе 24 по подземным водам).

За предоставленные услуги в сфере недропользования в бюджет области поступили платежи в объеме 314,250 тыс. рублей.

В 2015 году проведено четыре аукциона, по результатам которых предоставлено право пользования участками недр местного значения, содержащих песчано-гравийную смесь, глину керамзитовую, камень строительный и песок строительный. По результатам аукционов бюджет области пополнился на 6 622,096 тыс. рублей.

7.9. Государственное регулирование и надзор в сфере использования и охраны водных объектов

В 2015 году надзорная деятельность Управления Росприроднадзора по Самарской области по соблюдению водного законодательства проводилась по двум направлениям:
- федеральный государственный надзор за использованием и охраной водных объектов;
- государственный земельный надзор в части соблюдения режима использования земельных участков в водоохранных зонах и прибрежных полосах водных объектов.

Наиболее распространенными видами нарушений в сфере водопользования, выявленными за 2015 год, являлись:
- загрязнение водного объекта неочищенными сточными водами;
- отсутствие договоров водопользования, решений о предоставлении водного объекта в пользование (лицензий на водопользование);
- несоблюдение условий и требований, установленных в договоре водопользования, решения о предоставлении водного объекта в пользование (лицензии на водопользование).

По результатам надзорной деятельности, проведенной отделом надзора за водными ресурсами Управления в части загрязнения водных объектов неочищенными сточными водами, 2 предприятия-водопользователи снизили массу загрязняющих веществ: АО «НК НПЗ», МУП «Мирненское ЖКХ». Взыскан размер вреда, причиненного водному объекту вследствие нарушения водного законодательства (МУП «Жилкомсервис» п. Новосемейкино) в сумме 1 469 559 рублей. По решению Одиннадцатого Арбитражного Апелляционного Суда с ОАО «Водоканал» города Нефтеюганска будет взыскан ущерб, причиненный реке Самара в размере 1 854 080 рублей.
В сфере разрешительной деятельности на сбросы загрязняющих веществ в водные объекты в 2015 году достигнуты следующие результаты:

- согласовано нормативов допустимых сбросов загрязняющих веществ в водные объекты – 11 единиц;
- выдано разрешений на сбросы загрязняющих веществ в водные объекты – 16 единиц (massa сбросов в пределах установленных нормативов – 49 008,1 тонн в год);
- установлены лимиты на сбросы загрязняющих веществ в водные объекты – 3 единицы (massa сбросов в пределах установленных лимитов – 30 130,3 тонн в год);
- утверждено нормативов допустимых сбросов загрязняющих веществ в водные объекты через централизованные системы водоотведения – 28 единиц;
- выдано разрешений на сбросы загрязняющих веществ в водные объекты через централизованные системы водоотведения – 38 ед. (massa сбросов в пределах установленных нормативов – 65 278,4 тонн в год);
- установлены лимиты на сбросы загрязняющих веществ в водные объекты через централизованные системы водоотведения – 4 единицы (massa сбросов в пределах установленных лимитов – 5290 тонн в год).

К сфере деятельности министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области в области регулирования и надзора в сфере использования и охраны водных объектов относятся: предоставление государственной услуги по предоставлению водных объектов в пользование на основании договора водопользования или решения о предоставлении водного объекта в пользование; организация и проведение аукционов по приобретению права на заключение договора водопользования в части использования акватории водного объекта, в том числе для рекреационных целей; администрирование платы за пользование водными объектами по договорам водопользования, заключенным министерством; курирование государственных контрактов по водохозяйственным мероприятиям, финансируемым за счет средств бюджета Самарской области и федерального бюджета, государственным заказчиком по которым выступает министерство; подготовка документации и защита материалов бюджетных проектов в Нижне-Волжском бассейновом водном управлении, Федеральном агентстве водных ресурсов (объекты, финансируемые за счет субвенций и субсидий из федерального бюджета); подготовка отчетов в Федеральное агентство водных ресурсов, отдел водных ресурсов по Самарской области, Управление Росприроднадзора по Самарской области об освоении средств федерального бюджета, о выдаче разрешительной документации на водопользование; согласование расчета вреда, который может быть причинён жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварий гидротехнических сооружений; разъяснения о нахождении земельных участков в границах водоохранных зон и береговых полос водных объектов.

В рамках оказания государственной услуги по предоставлению водных объектов, находящихся в собственности Самарской области и водных объектов, расположенных на территории Самарской области, полномочия по которым переданы в соответствии со ст. 26 Водного Кодекса РФ субъекту Российской Федерации в пользование на основании договоров либо решений о предоставлении водных объектов в пользование, в 2015 году было рассмотрено 106 обращений, по 74 из которых принято положительное решение, по 32 обращениям заявителям выдан отказ в предоставлении водного объекта в пользование.

По итогам 2015 года за пользование водными объектами на основании договоров водопользования, заключенных министерством, поступило 5427,63954 тыс.рублей в федеральный бюджет.

Основные показатели, характеризующие деятельность министерства в этой сфере представлены на диаграммах 7.9.1. – 7.9.5.
Диаграмма 7.9.1.

Предоставление водных объектов в пользование на основании решения о предоставлении водного объекта в пользование

Диаграмма 7.9.2.

Предоставление водных объектов в пользование на основании договора водопользования
Диаграмма 7.9.3.

Финансирование из федерального бюджета

Диаграмма 7.9.4.

Доход от платы за пользование водными объектами, находящимися в федеральной собственности, по договорам водопользования
В 2015 году в рамках государственной программы «Развитие водохозяйственного комплекса Самарской области в 2014-2020 годах» за счет средств областного и федерального бюджетов министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области в целях защиты от подтопления и затопления населенных пунктов выполнен этап работ по берегоукреплению Куйбышевского водохранилища в районе очистных сооружений сельского поселения Луначарский м.р. Ставропольский и реки Пестравочка в м.р. Пестравский, выполнен этап работ по капитальному ремонту гидротехнических сооружений пруда на балке Таловрин Дол м.р. Большечерниговский, завершена расчистка русел рек Сызранка м.р. Сызранский, Чапаевка у села Сухая Вязовка и села Яблоновый Овраг м.р. Волжский, Талымыш м.р. Похвистневский, общей протяженностью 7,65 км, что позволило защитить от подтопления и затопления 592 дома, в которых проживает 1653 человека. Также завершена разработка проектной документации по расчистке русла реки Большой Иргиз в районе нефтебазы с. Большая Глушница м.р. Большеглушицкий и выполнен первый этап работ по определению границ водоохранных зон и прибрежных защитных полос рек Сок и Самара в пределах Самарской области.

7.10. Государственное регулирование и надзор в сфере охраны атмосферного воздуха

В процессе осуществления государственного экологического надзора в части осуществления охраны атмосферного воздуха за 2015 год проведено 93 проверки по соблюдению требований природоохранного законодательства, в том числе 47 плановых и 46 внеплановых. В ходе проверок выявлено 61 нарушение, устранено – 49 нарушений. По результатам контрольных мероприятий выдано 56 предписаний, выполнено 45, из них: по выданным в 2015 году – 21 предписание, по переходящим за предыдущие годы – 24 предписания.
По материалам проверок Управления составлено 55 протоколов об административном правонарушении, к административной ответственности привлечено 61 ответственное лицо, из них по материалам проверок Управления привлечено 46 лиц. Сумма взысканных штрафов составила 2 млн. рублей.

За 2015 год в Управлении Росприроднадзора по Самарской области проведена следующая работа по осуществлению разрешительной деятельности в части экологического нормирования выбросов загрязняющих веществ в атмосферный воздух:

- утверждено нормативов выбросов вредных (загрязняющих) веществ в атмосферный воздух – 379 единиц;
- выдано разрешений на выбросы загрязняющих веществ в атмосферный воздух – 121 единица;
- установлено лимитов на выбросы загрязняющих веществ в атмосферный воздух – 4 единицы.

Масса выбросов загрязняющих веществ в атмосферный воздух в пределах установленных нормативов допустимых выбросов (по выданным разрешениям) в 2015 году составила 864279,4 тонн в год, в пределах установленных лимитов на выбросы (по выданным разрешениям) – 154260,2 тонн в год.

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области осуществляет полномочия по выдаче разрешений на выбросы вредных (загрязняющих) веществ в атмосферный воздух стационарных источников, находящихся на не подлежащих федеральному государственному экологическому надзору объектах хозяйственной и иной деятельности на территории области. В 2015 году Министерством были выданы (продлены) 1004 разрешения на выброс вредных (загрязняющих) веществ в атмосферный воздух для объектов хозяйственной и иной деятельности, не подлежащих федеральному государственному экологическому надзору.

7.11. Государственное регулирование и надзор в области обращения с отходами

В 2015 году в Управление Росприроднадзора по Самарской области поступило 818 материалов на установление нормативов образования отходов и лимитов на их размещение, утверждено 800 материалов (в т.ч. 110 единиц поступивших в 2014 году), отказано в утверждении 56 материалов.

Годовой норматив образования отходов (по утвержденным нормативам образования отходов и лимитам на их размещение) составил 2499950,8 тонн в год.

Поступил 361 материал на переоформление нормативов образования отходов и лимитов на их размещение, 351 материал переоформлен, было отказано в переоформлении 10 материалов. Все 49 материалов, поступивших на оформление дубликатов нормативов образования отходов и лимитов на их размещение были переоформлены.
В течение 2015 года производилась выдача лицензий на деятельность по сбору, обезвреживанию, транспортированию, размещению отходов I-IV класса опасности:

- поступило материалов на предоставление лицензий – 71 единица (рассмотрено материалов – 38 ед.; предоставлено лицензий – 37 единиц; отказано в предоставлении лицензий (некомплектность материалов) – 1 единица);
- поступило материалов на переоформление лицензий – 34 единицы (рассмотрено материалов – 15 единиц; переоформлено лицензий – 13 единиц; отказано в переоформлении лицензий – 2 единицы)
- осуществлялась паспортизация отходов I-IV класса опасности:
 - поступило материалов по обоснованию класса опасности отходов – 2746 единиц;
 - рассмотрено материалов по обоснованию класса опасности отходов – 2716 единиц;
 - отказано в рассмотрении материалов – 8 единиц (некомплектность).

Производился прием отчетности субъектов малого и среднего бизнеса и ведение государственного реестра объектов размещения отходов:
- принято форм федерального государственного статистического наблюдения 2-ТП (отходы) – 7429 единиц;
- принято отчетности субъектов малого и среднего бизнеса об образовании, использовании, обезвреживании и размещении отходов (за исключением статистической отчетности) – 4615 единиц;
- зарегистрировано объектов размещения отходов – 1 единица.

7.12. Государственный земельный надзор

Государственный земельный надзор на территории Самарской области в части своих полномочий осуществляется Управлением Федеральной службы по надзору в сфере природопользования (Росприроднадзор) по Самарской области и Управлением Федеральной службы по ветеринарному и фитосанитарному надзору (Россельхознадзор) по Самарской области (на землях сельскохозяйственного назначения и земельных участках сельскохозяйственного использования в составе земель поселений).

В числе основных нарушений, выявленных Росприроднадзором в 2015 году: порча, загрязнение и захламление земель; невыполнение обязательных требований по рекультивации земель. В течение года было рассмотрено 123 проекта рекультивации нарушенных земель, по результатам рассмотрения подготовлены письма-рекомендации.

За 2015 год также рассмотрено 532 обращения о наличии или отсутствии земель особо охраняемых природных территорий федерального значения, по результатам рассмотрения обращений выданы справки.

В рамках земельного надзора Управлением Росельхознадзора по Самарской области проведено 771 контрольно-надзорное мероприятие, в том числе: 339 плановых проверок, 33 внеплановых проверок, 182 административных расследования. Проконтролировано более 240 тысяч гектаров земель сельскохозяйственного назначения.

Выявлено 185 нарушений, по которым возбуждено 182 дела об административных правонарушениях. Выдано 40 предписаний об устранении выявленных нарушений на площади 1700 гектаров. Исполнено 24 предписания, вовлечено в оборот земель сельскохозяйственного назначения 1245 гектаров.

В результате рассмотрения дел об административных правонарушениях вынесено 144 постановлений о назначении административного наказания. Наложено административных штрафов на сумму 8,8 млн. рублей.

За 2015 год выявлено 10 нарушений с причинением вреда почвам на площади свыше 47,7 гектаров. В добровольном порядке нарушителями возмещён вред в сумме на сумму 11,7 млн. рублей.
С целью выявления земельных участков, загрязненных опасными химическими веществами, патогенами, экопатогенами, 59 контрольно-надзорных мероприятий проведены с привлечением экспертов и экспертных организаций - было отобрано 882 пробы почвенных образцов на площади 19,2 тыс. гектаров, из них в 240 образцах (более 27%) на площади 243 гектаров выявлено превышение ПДК по ряду показателей.

7.13. Государственный надзор в области рыболовства и сохранения водных биологических ресурсов

Средневолжское территориальное управление Федерального агентства по рыболовству (далее – Управление) является территориальным органом федерального органа исполнительной власти и осуществляет государственный контроль и надзор за соблюдением законодательства Российской Федерации в области рыболовства и сохранения водных биологических ресурсов (ВБР), за исключением ВБР, находящихся на ООПТ федерального значения и занесенных в Красную книгу Российской Федерации. На территории Самарской области указанные полномочия осуществляет отдел государственного контроля, надзора и охраны водных биологических ресурсов по Самарской области Управления (далее – Отдел). В зону ответственности Отдела входит территория Самарской области, а так же Радищевский район Ульяновской области и Хвалынский, Духовницкий, частично Ивантеевский, Пугачёвский, Балаковский районы Саратовской области.

В 2015 году продолжалась контрольно – надзорная работа, направленная на охрану и воспроизводство рыбных запасов. Так на территории Самарской области в 2015 году было запланировано проведение 21 проверки юридических лиц и индивидуальных предпринимателей с целью предупреждения, выявления и пресечения правонарушений в области охраны, защиты, воспроизводства и уничтожения водных биологических ресурсов, из них 1 проверка была исключена из плана ввиду её ликвидации на момент проведения проверки. Фактически была проведена 21 проверка юридических лиц и индивидуальных предпринимателей, из них 1 внеплановая проверка. В рамках проверок было выявлено 9 правонарушений, допущенных юридическими лицами и индивидуальными предпринимателями, к административной ответственности привлечено 3 юридических лица, 3 должностных лица, выдано 9 предписаний об устранении выявленных правонарушений. Наложено штрафов на сумму 60 тыс. рублей. В органы прокуратуры подавалось 3 заявления о проведении внеплановых проверок в отношении юридических лиц, по всем 3 получен отказ.

В 2015 году в зоне ответственности Средневолжского территориального управления на территории Самарской области факты гибели водных биологических ресурсов не выявлялись. В 2015 году в рамках контрольно-надзорных мероприятий было выявлено 19 фактов нарушения природоохранного законодательства в области охраны, защиты, воспроизводства и уничтожения водных биологических ресурсов, из них 5 фактов по загрязнению водных объектов. По результатам выявленных правонарушений по ст. 8.33 КоАП РФ привлечено 2 юридических лица, 2 должностных, по ст. 8.38 привлечено 3 юридических лица, 3 должностных, по ст. 8.42 привлечено 2 юридических лица, 4 должностных (в том числе индивидуальных предпринимателей). Общая сумма наложенных штрафов 803 тыс. рублей, предъявлен ущерб на сумму 111,5 тыс. рублей.

Дополнительно в отношении 3 юридических лиц составлены административные протоколы и переданы в суд по ст. 19.7 КоАП РФ. Юридическим лицом ОАО «РусГидро» и его должностным лицом административный штраф был оспорен. Между тем, решением суда г.о. Жигулёвск и Областным судом постановление вынесенное Управлением оставлено в силе, административный штраф оплачен.

За нарушение специального режима водоохранных зон водного объекта выявлено 221 нарушение, допущенное гражданами по ст. 8.42 КоАП РФ, и 1 нарушение допущенное гражданином по ст. 8.33. Сумма наложенных штрафов составила 719,7 тыс. руб.
Проведена значительная информационно-разъяснительная работа с хозяйствующими субъектами по вопросу добровольного возмещения ущерба, причинённого водным биологическим ресурсам в результате осуществления хозяйственной деятельности. Кроме того, направляются материалы в ФГБУ «Средневолжрыбвод» для подсчёта ущерба, нанесённого водным биологическим ресурсам. Рассчитанный ущерб, предъявляется организациям в судебном порядке.

В 2015 году наиболее характерными нарушениями рыбоохранного и природоохранных законодательства со стороны субъектов хозяйственной деятельности являлись загрязнение водных объектов нефтепродуктами, сброс сточных вод с превышением предельно-допустимых концентраций вредных веществ, установленных для водоемов рыбохозяйственного значения. Также выявлены такие нарушения, как осуществление работ по ремонту и строительству подводных переходов, мостовых переходов, берегоукрепления, технических эстакад и т.д. без оценки негативного воздействия на состояние водных биологических ресурсов и среды их обитания, а также без согласования с уполномоченными органами, эксплуатация водозаборных сооружений с неисправными рыбозащитными устройствами, несоблюдение ограничений хозяйственной деятельности в границах водоохранных зон и прибрежных защитных полос водных объектов. Наиболее распространенными нарушениями рыбохозяйственного законодательства со стороны физических лиц — движение и стоянка автотранспорта в водоохранных зонах рыбохозяйственных водоемов, а также кладбище мусора, разлив ГСМ, несанкционированный водоем.

В результате контрольных мероприятий на водозаборных сооружениях установлено, что большая часть проверенных водозаборов имеют специальные рыбозащитные устройства (РЗУ), либо примитивные средства защиты, не являющиеся специальными рыбозащитными устройствами (плоские сетки или решетки с размерами ячеек от 4х4 мм до 10х10 мм). Большинство крупных водозаборов в настоящее время оборудованы специальными РЗУ. Однако во многих случаях рыбозащитные сооружения, в связи с длительностью эксплуатации, подверглись разрушению, коррозии и требуют реконструкции, некоторые РЗУ не согласованы органами рыбоохраны. Используемые специальные рыбозащитные сооружения преимущественно представлены РЗУ кассетного, зонтичного типа и РОП, а также градиентного типа. Наиболее значительные объемы забора воды осуществляются для нужд таких предприятий как ГЭС, ГРЭС, ТЭЦ, нефтехимические предприятия, а также для коммунальных нужд городов области. Наблюдений за попаданием рыбы в водозаборные сооружения, а так же мероприятий по освидетельствованию технического состояния РЗУ на водозаборах специалистами Отдела в 2015 году не проводилось.

По выявленным нарушениям были наложены административные взыскания и выданы предписания об устранении нарушений.

7.14. Государственное регулирование лесопользования и надзор за состоянием, использованием, охраной, защитой лесного фонда и воспроизводства лесов

В 2015 году Управлением Росприроднадзора по Самарской области в отношении хозяйствующих субъектов выполнено 3 плановых проверки и 4 рейда в части государственного лесного контроля на землях ООПТ федерального значения. По ст.8.25 КоАП РФ возбуждено 3 административных дела, по ст.8.31 КоАП РФ – 1 дело.

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области (Министерство) является уполномоченным органом исполнительной власти Самарской области, осуществляющим переданные отдельные государственные полномочия Российской Федерации в области лесных отношений, в том числе в области использования, охраны, защиты, воспроизводства лесов на землях лесного фонда, расположенных на территории Самарской области.
В соответствии со статьей 83 Лесного кодекса РФ, Положением о Министерстве, утвержденным постановлением Правительства Самарской области от 09.10.2013 года № 528, Министерство в сфере лесного хозяйства осуществляет следующие функции: федеральный государственный лесной надзор (лесная охрана); федеральный государственный пожарный надзор в лесах. Целью федерального государственного лесного надзора (лесная охрана) является обеспечение соблюдения лесного законодательства, целями федерального государственного пожарного надзора в лесах являются обеспечение соблюдения юридическими лицами и гражданами, в том числе индивидуальными предпринимателями, требований пожарной безопасности в лесах и принятие мер по результатам проверок в соответствии с Федеральным законом «О пожарной безопасности», Лесным кодексом Российской Федерации. Государственная функция содержит в себе совокупность проводимых в отношении лесопользователей мероприятий по федеральному государственному лесному надзору (лесная охрана), федеральному государственному пожарному надзору в лесах с целью оценки соответствующих им действий, требований лесного законодательства Российской Федерации, установленного порядка использования, охраны, защиты и воспроизводства лесов, утвержденных стандартов, норм и правил в области лесных отношений.

На территории Самарской области в рамках переданных полномочий Российской Федерации в области лесных отношений федеральный государственный лесной и федеральный государственный пожарный надзор осуществляет 249 сотрудников министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области.

В 2015 году государственными лесными инспекторами Министерства проведено более 3800 выездов по маршрутам патрулирования государственного лесного фонда Самарской области, в сравнении с 2014 годом кратность патрулирования в 2,6 раза увеличилась. Министерством проведено 590 проверок соблюдения требований лесного законодательства и правил пожарной безопасности в лесах. Выдано 321 предписание об устранении нарушений лесного законодательства. Государственными лесными инспекторами составлен 771 протокол об административных правонарушениях. Из них 128 - в отношении юридических лиц, 117 - в отношении должностных лиц, 526 - в отношении физических лиц. Привлечено к административной ответственности 680 лиц в виде штрафа на общую сумму 11 314,55 тыс. рублей, взыскано 3 282,6 тыс. рублей. Из них на 105 юридических лиц наложено штрафов на сумму 9 075,0 тыс. рублей, взыскано 1 585,0 тыс. рублей, на 98 должностных лиц наложено штрафов на сумму 842,3 тыс. рублей, взыскано 705,4 тыс. рублей, на 477 физических лица наложено штрафов на сумму 1 397,25 тыс. рублей, взыскано 992,2 тыс. рублей.

Между Министерством и Федеральной службой судебных приставов по Самарской области (далее – ФССП) наложено межведомственное взаимодействие в целях оперативного обмена информацией и принятия совместных мер по взысканию
задолженности. Так в 2015 году работа по актам сверки с ФССП проводилась ежеквартально. Было рассмотрено 146 постановлений по исполнительным производствам на общую сумму 3 539,0 тыс. рублей. Из них рассмотрено 73 постановления о возбуждении исполнительного производства на сумму 2 148,0 тыс. рублей и 73 постановления об окончании исполнительных производств на сумму 1 391,0 тыс. рублей, из которых окончено в связи с фактическим исполнением 63 исполнительных производств на сумму 1 173,0 тыс. рублей.

Министерством был разработан и утвержден совместно с ГУ МВД России по Самарской области «План совместных мероприятий, направленных на предотвращение и своевременное выявление нарушений природоохранного законодательства на территории Самарской области на 2015 год» (далее – План). В рамках исполнения Плана предусмотрен комплекс мероприятий, направленный на надлежащую организацию взаимодействия правоохранительных органов и Министерства в вопросах выявления и привлечения лиц, допустивших правонарушения. Организован оперативный обмен информацией по правонарушениям в области природоохранного законодательства, проведен анализ мест, наиболее подверженных правонарушениям, создана рабочая группа из числа сотрудников территориальных подразделений ГУ МВД России по Самарской области и Министерства, разработаны и реализуются графики совместного патрулирования, в рамках которых осуществлено 235 совместных выездов, проведено 10 совместных дежурств на центральном стационарном посту органов внутренних дел, 9 рейдов на автомобильных дорогах в районе административных границ с соседними субъектами Российской Федерации.

В целях упрощения процедуры сообщений гражданами о нарушениях лесного законодательства в СМИ муниципальных образований Самарской области не менее 2-х раз в месяц размещается информация о номере телефона единой диспетчерской службы лесной охраны Самарской области (тел. – 231-00-63).
В Самарской области ведётся значительная научно-исследовательская деятельность в сфере охраны окружающей среды и природопользования как фундаментального, так и прикладного характера. Экологические исследования фундаментального характера осуществляют, в первую очередь, Институт экологии Волжского бассейна Российской Академии наук (г.о. Тольятти); отдельные, носящие фундаментальный характер работы, также выполняются силами высших учебных заведений и научно-исследовательских учреждений, входящих в системы Минобрнауки РФ, Минздрава РФ, Минсельхоза РФ и других федеральных министерств. Работы прикладного характера, кроме указанных учреждений, осуществляет и ряд проектных и проектно-конструкторских организаций. В силу невозможности (а, в отдельных случаях, ввиду узкоконкретного характера) дать информацию о каждой выполненной в 2015 году работе, в разделе отражены только основные работы преимущественно экосистемного и просветительского характера.

8.1. Фундаментальные исследования Института экологии Волжского бассейна РАН

На базе Института экологии Волжского бассейна РАН (ИЭВБ РАН) ведутся работы по изучению глобальных экологических процессов, протекающих на территории бассейна Средней Волги, а также исследования актуальных вопросов состояния и функционирования отдельных элементов экосистемы (биоты) региона в условиях интенсивного и разнообразного антропогенного воздействия на окружающую среду – как по программе фундаментальных исследований государственных академий наук, так и в рамках сотрудничества с региональными органами власти, а также отдельными хозяйствующими субъектами.

В 2015 году Институтом экологии Волжского бассейна РАН было опубликовано 7 монографий, 6 сборников, 546 статей и тезисов (в том числе 47 на иностранных языках).

Наиболее значимыми в 2015 году являлись следующие НИР.

Исследования в рамках направления «Экология организмов и сообществ»

В рамках разработки темы «Экологические закономерности структурно-функциональной организации, ресурсного потенциала и устойчивого функционирования экосистем Волжского бассейна» Институтом экологии Волжского бассейна РАН в 2015 году были достигнуты следующие результаты.

Установлено, что чужеродные виды гидробионтов (зоопланктонные организмы понто-каспийского комплекса) Нижней и Средней Волги, несмотря на заметную флуктуацию численности, расширяют свое присутствие в экосистеме и создают новые пищевые цепи, достигая в отдельные годы до 50% общей биомассы. Увеличение численности понто-каспийских вселенцев (бычка-кругляка, бычка-цуцика, бычка-головача, звездчатой пуголовки, иглы-рыбы) осуществляется на фоне усиливающего ухудшения качества водных масс, которые обуславливают появление у них различных патологий органов и тканей. Существенно преобладали особи, в крови у которых наблюдалось два и более патологии эритроцитов. Встречаемость таких рыб варьировала от 50,0% у уклеи до 83,8% среди бычка-головача. Среди карповых рыб наибольший процент таких особей зафиксирован у леща – 68,4%. Количество особей, без патологий эритроцитов, не превышало 24,24% среди бычка-кругляка, это максимальный процент здоровых рыб среди всех обследованных видов. Увеличение численности этих рыб в водоемах Нижней и Средней Волги обусловлено не их большей устойчивостью к антропогенному загрязнению водной среды, а наличием свободных трофических ниш и
обширных нерестовых участков. В среднем, доля видов-вселенцев в теплый период года в биомассе зоопланктона составила 36% (Рис. 8.1.1).

Впервые выявлены особенности иерархической структуры паразитарных систем «трематоды – летучие мыши» на примере трематод (класс паразитических плоских червей) Plagiorchis vespertilionis, Prosthodendrium chilostomum, Prosthodendrium longiforme. Установлены виды летучих мышей, участвующих в формировании этих паразитарных систем, и виды, выполняющие основную роль в поддержании численности трематод.

Дана количественная оценка пространственной неоднородности внутренней фосфорной нагрузки на водные массы Куйбышевского водохранилища в период летней межени. Оценка экологического состояния Куйбышевского водохранилища выполнена по данным экспедиционных наблюдений. На основе комплексного анализа материалов наблюдений, сведений о биогенной нагрузке и регулировании водного стока установлено, что распределение фитопланктона и фосфатов по акватории водохранилища взаимосвязано и имеет ярко выраженную пространственную неоднородность.

Впервые проведена оценка площади ареала-минимума конкретной флоры на примере лесостепной зоны Самарского Заволжья. Изучено видовое богатство и систематическая структура флоры Среднего Поволжья. Флористическое богатство Среднего Поволжья составляет не менее 1990 видов, относящихся к 695 родам и 138 семействам, адвентивная фракция представлена 490 видами и составляет 24,6% от всей флоры.

Разработаны эмпирико-статистические модели пространственной организации, функционирования и устойчивости лесных экосистем Приокско-террасного биосферного заповедника. Выявлены эдафические климаксы лесных сообществ, которые отображают разнообразие зональных структур данного подтаежного региона.

Разработаны методологические подходы к оценке экосистемных услуг, направленные на развитие теории региональной экономики, расширяющие представления об экономической сущности учета природного капитала и экосистемных услуг, позволяющие получить более широкий инструментарий региональных экономико-экологических измерений.

Проведен обзор природно-очаговых и зооантропонозных заболеваний на территории Самарской области. Дана оценка территории по распространенности природно-очаговых заболеваний. Установлено, что из зарегистрированных 7 природно-очаговых заболеваний, наиболее распространена геморрагическая лихорадка с почечным синдромом (ГЛПС). За последние 5 лет ареал распространения ГЛПС расширился, а
уровень заболеваемости ежегодно превышает среднероссийский. По распространенности и уровню заболеваемости ГЛПС выделены 3 зоны, к неблагоприятной зоне относятся центральные и северо-восточные районы области.

Проанализированы различия структуры области редоксkläна 2 типов stratифицированных озер с разными аноксическими условиями в гипо- (монимо-) лимнионе. Установлено, что вертикальная структура и состав фототрофного сообщества stratифицированных озер с железным и сульфидным типом аноксии имеют существенные различия.

Рассмотрен подход к комплексному анализу семейственного спектра флор разного уровня и масштаба. Предложена зависимость "число видов – число семейств". Введен в рассмотрение спектр индексов разнообразия семейств (СНРС), а также индекс семейственной представленности. Сформулированы критерии оценки устойчивости (естественности сложения) флоры.

Установлено, что растения-галофиты с разной стратегией адаптации к естественному засолению имеют различные биохимические протекторные стратегии эу-, крино- и гликофитов.

Проведен синтаксономический и экологический анализ растительных сообществ с доминированием тростника в долине Нижней Волги. Выделены новые ассоциации.

Исследования в рамках направления «Биологическое разнообразие»

В рамках разработки темы «Оценка современного биоразнообразия и прогноз его изменения для экосистем Волжского бассейна в условиях их природной и антропогенной трансформации» Институтом экологии Волжского бассейна РАН в 2015 году были достигнуты следующие результаты.

На основе многолетних исследований структуры сообществ, впервые дана комплексная оценка биоразнообразия планктонных и донных сообществ лотических и ленитических систем Средней и Нижней Волги. Представлено 650 таксонов и видов в малых и средних реках лесостепной зоны. Выявлены особенности структурной организации и распределения зообентоса в водоемах урбанизированной территории города Тольятти. Зарегистрировано 184 таксона и вида гидробионтов донной фауны озер.

Уточнены географические пункты обитания криптических форм земноводных (Республика Мари Эл, Татарстан, Башкортостан, Самарская область). Расширен кадастр паразитов земноводных Волжского бассейна. Кадастр дополнен новыми данными о гельминтах бесхвостых амфибий.

Составлен рейтинг природоохранной ценности памятников природы регионального значения Самарской области. Наибольшая сумма балов характерна для лесостепных районов Высокого Заволжья, наименьшая – для степных районов Низкого и Сыртового Заволжья.

Для степной растительности Среднего и Нижнего Поволжья установлены 4 новые ассоциации и 3 новые субассоциации, объединяющие естественные и трансформированные степные сообщества, и их положение в новом синопсисе Европы – они отнесены к союзам Festucion valesiacae, Helictotricho desertori-Stipion rubentis и Tanaceto-Stipion lessingianae порядков Festucetalia valesiacae, Helictotricho-Stipetalia и Tanaceto-Stipetalia lessingianae класса Festuco-Brometea. Банк «Растительность бассейнов Волги и Урала» (ID EU-RU-003; Лысенко и др., 2014) дополнен 136 геоботаническими описаниями.

Установлено, что численность и биомасса бактериобентоса Куйбышевского и Саратовского водохранилищ достоверно регулируется пелитовой и аллевритовой фракциями донных отложений, содержанием органического и гуминового вещества.

Установлено, что на Камском каскаде водохранилищ наблюдается трансформация трофической структуры фитопланктона в направлении от Камского водохранилища к
Куйбышевскому. В общем видовом разнообразии альгофлоры снижается доля водорослей с гетеротрофным (миксотрофным) типом питания, а доля настоящих автотрофов возрастает.

Установлено, что для дифференциации молодых особей ужовых змей по полу подходят неперекрывающиеся диапазоны меристических признаков внешней морфологии взрослых особей: у обыкновенной медянки и узорчатого полоза — количество брюшных щитков, у обыкновенного и водяного ужей — количество подхвостовых щитков.

Проверена гипотеза о причинах эволюции размерного полового диморфизма у пряткой ящерицы Lacerta agilis. Обнаружены и проанализированы различия между двумя подвидами этого широко ареального вида по репродуктивным параметрам и относительной длине тела самок.

8.2. Научно-исследовательские разработки Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет)

На базе Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет), с которым в форме присоединения в 2015 г. был объединен Самарский государственный университет, в 2015 г. был выполнен ряд работ, направленных на изучение и сохранение биологического разнообразия, оптимизации среды обитания и обеспечения экологической безопасности населения Самарской области в условиях значительных антропогенных нагрузок. Наиболее значимыми из них являются следующие.

Тема «Исследование биоэкологических и биогеохимических составляющих процессов ренатурализации нарушенных техногенных ландшафтов»

Научным руководителем данного направления выступает профессор кафедры экологии, ботаники и охраны природы, д.б.н., проф. Н.В. Прохорова.

В 2015 г. продолжались полевые и камеральные исследования процессов ренатурализации техногенного ландшафта Усть-Сокского (Сокского или Западного) карьера, расположенного в границах городского округа Самара на северном макросклоне Сокольих гор. Изучались процессы вторичной восстановительной сукцессии, идущей в карьере с начала 80 годов XX века. Было установлено, что в карьере осуществляется первичное почвообразование, в ходе которого формируются почвогрунты, характеризующиеся микробиологической активностью, содержащие органический углерод и основные элементы минерального питания растений (N, K, P, Ca, Mg, Fe, S, Cl, Co, Cu, Zn, Ni, Cr, Mo и др). В карьере идут активные естественные процессы самозарастания днища и террас высшими сосудистыми растениями. К настоящему времени сформирована локальная флора карьера, насчитывающая 122 вида древесных и травянистых растений. Выявлено 8 видов растений, занесенных в Красную книгу Самарской области. Полученные результаты могут служить научным базисом для разработки экологически и экономически обоснованных технологий рекультивации карбонатных карьеров в Поволжском регионе.

Тема «Исследование растительности в рамках мониторинговых исследований на экскурсионном маршруте Стрельной горы после его обустройства»

Научным руководителем данного направления выступает заведующая кафедрой ecology, botany and environment protection, prof. L.M. Kavalevova.

Продолжение начатых в 2013 г. мониторинговых исследований в 2015 г. позволило скорректировать базовый список видов высших растений, которые формируют
растительные ассоциации. Установлено произрастание на научном стационаре горы. Стрельной в зоне экскурсионной тропы 160 видов высших растений, относящихся к 130 родам и 39 семействам. По сравнению с предыдущими исследованиями количество видов и семейств растений, произрастающих на исследованной территории сократилось. Среди выявленных 160 видов представлено 24 раритетных, в том числе 24 вида, включенных в Красную книгу Самарской области, 5 видов, включенных в Красную книгу РФ. Достаточно длительное воздействие рекреации, начавшееся задолго до строительства экскурсионного настила, привело к внедрению в растительный покров научного стационара видов-рудералов. Их число составляет 15, они присутствуют практически на всех пробных площадях и трансектах научного стационара.

В процессе обследования 2015 г. были скорректированы геоботанические описания растительных сообществ на трансектах и учетных площадках, включавшие оценку нарушенности почвенно-растительного покрова, вытоптанности, каменистости. Было установлено, что на пробных площадях научного стационара в формировании растительного покрова участвует от 43 до 60 видов.

Растительный покров, нарушенный в процессе строительства настила, восстанавливается под настилом за счет разрастания особей, располагающихся вблизи настила, и развития образовавшихся всходов. На пробных площадях, граничащих с лесными сообществами, в этом наиболее активно участвуют кустарниковые виды и такие травянистые растения как Hieracium virosus, Vincetoxicum stepposum, лазурник трехлопастной «врастающие» под настил и выходящие из-под него. На пробных площадях, граничащих со степными сообществами, основное участие в восстановлении растительного покрова принимают Scorzonera hispanica, Hieracium virosus, Potentilla arenaria, Thymus zhegulensis, Echinops ritro, Carex pediformis, Centaurea carbonate, Gypsophila juzepczukii, Elytriga loliodes, Artemisia campestris.

Отмеченные в 2014 году процессы заращения нарушенных территорий на многих пробных площадях не смогли полноценно реализоваться в 2015 году. Планировое зарастание и общение сокращение нарушенных территорий наиболее успешно происходило только на участках, где рельеф и общее развитие растительного покрова препятствуют выходу экскурсантов с настила на открытую поверхность.

Таким образом, зафиксировано восстановление растительных сообществ там, где были нарушены в результате рекреационного воздействия и в ходе строительства настила, и образование новых нарушенных участков. Также было установлено, что негативное воздействие рекреации на растительный покров продолжается. На склоне вытоптаны новые тропы, проходящие вдоль настила и от него, ведущие к обзорным точкам, появились новые тропы на лесные и степные участки и по подъему на шихан - параллельно настилу с обеих сторон. В начале тропы, на участке ковыльной степи, к концу лета от многочисленных куртин ковыля сохранилась лишь центральная часть кустиков, все между ними оказался вытоптаанным.

Для значимого сокращения, в перспективе – прекращения негативной нагрузки на ценнейший объект природного наследия необходимо сосредоточить дополнительные усилия на реализации мероприятий по усилиению воспитательной работы с посетителями и регулированию их поведения, насыщению тропы экологической и природоведческой информацией. Воспитание экологической культуры посетителей в этом отношении, как нам думается, следует вести более активно, как через усиление визуального воздействия (яркие запрещающие таблички на самом настиле), так и отчасти мерами принуждения, наличием дежурного инспектора по охране заповедника на настиле в период прохождения потока экскурсантов.
Продолжение аэропалинологического мониторинга атмосферного воздуха города Самары

Присутствие в атмосферном воздухе пыльцы высших растений, спор грибов и другого биогенного материала выступает в качестве фактора, провоцирующего аллергические реакции. Организовать их своевременную профилактику сезонных заболеваний (поллинозов) могут данные аэропалинологического мониторинга, которые при накоплении массива трех-пятилетних данных позволяют составить региональный календарь пыления. Начатое в 2013 году объединенными усилиями специалистов Самарского городского центра аллергологии и иммунологии, ГБУЗ СО «ГБ № 6» (К.В. Блашенцев), НОУ ВПО медицинского института «Реавиз» (проф., д.м.н. М.В. Манжос) и преподавателей кафедры экологии, ботаники и охраны природы Самарского государственного университета (на настоящий день – СГАУ) (проф., д.б.н. Л.М. Кавеленова, ст.преп., к.б.н. Н.В. Власова) проведение аэропалинологического мониторинга атмосферного воздуха проходило в вегетационный период с апреля по сентябрь 2015 года. На двух модельных площадках в городе Самаре ежедневно осуществлялся трехкратный отбор проб пыльцы и спор грибов волюметрическим методом с помощью ловушки-импактора на предметные стекла, покрытые специальной смесью. На кафедре экологии, ботаники и охраны природы проводилась обработка предметных стекол (определение видовой принадлежности пыльцевых зерен, спор грибов и подсчет их количества с пополнением архива цифровых микрофотографий). Для погодных условий 2015 года был скорректирован составленный в 2013-14 годах список видов растений – источников пыльцевого дождя, оценены особенности сроков пыления и интенсивности пыльцевого дождя в 2015 году, картина которого обнаружила количественные (изменение высоты базовых пиков) и временные (смещение дат, изменение длительности пыления для отдельных видов) особенности. Составлен первичный вариант календаря пыления для города Самары.

Научные исследования Ботанического сада

Ботанический сад является обособленным структурным учебно-научным подразделением Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет). Важнейшие работы Ботанического сада в 2015 году были направлены на изучение и сохранение биологического разнообразия, оптимизации среды обитания и обеспечения экологической безопасности населения Самарской области.

Тема 1. Сравнительное изучение генофонда древесных растений различных ботанико-географических зон в природе и при интродукции.

Продолжались работы по изучению интродукционного потенциала представителей рода Орех. На коллекционный участок и в дендрарий высажены саженцы орехов собственной репродукции: 25 экземпляров ореха чёрного, 3 экземпляра ореха мелкоплодного. Посеяно 39 образцов разных видов орехов. Количество образцов различных видов, сортов, форм и гибридов представителей рода орех на коллекционном участке достигло 700 экземпляров. Продолжилось изучение их зимостойкости, засухоустойчивости, особенностей биологического развития (цветения, плодоношения), морфологических особенностей плодов, их всхожести, урожайности отдельных экземпляров деревьев. Создан план коллекционного участка орехов, ведётся работа над картотекой. Созданы новые экспозиции орехов в дендрарии.

Продолжалось также изучение коллекции лиановых растений. Проводились фенологические наблюдения, проведён анализ состава коллекции лиан на 2015 год. Заложен новый участок сортовых кленатисов (50 сортов). Всего в коллекции 76 сортов крупноцветковых и более 20 видов и сортов мелкоцветковых кленатисов. Изучались их
зимостойкость, засухоустойчивость, отрабатывалась методика их размножения, проводились наблюдения за изменением их декоративных качеств в течение сезона.

Тема 2. Реинтродукция редких местных видов природной флоры в естественные сообщества.

Реинтродукция редких местных видов, осуществляемая с 2008 года в рамках проекта «Создание условий для сохранения и восстановления популяций редких видов растений, занесенных в Красную книгу Самарской области», в 2015 году была продолжена в инициативном порядке. Осуществлялся полевой мониторинг состояния реинтродуцированных в природу в 2011-2014 гг. популяционных групп редких растений, а также мониторинг популяционных групп редких растений в культуре (в Ботаническом саду). Выявлено для большинства видов удовлетворительное, для части видов хорошее состояние популяционных групп, для пионов тонколистного отмечались массовое цветение и сменение растений в реинтродуцированных популяционных группах.

Для восстановления уничтоженной пожаром 2010 г. локальной популяции можжевельника казацкого в ФГБУ «Жигулевский государственный природный биосферный заповедник имени И.И. Спрыгина» по согласованию с руководством заповедника была проведена реинтродукция с использованием биоматериала, в 2008 г. переданного ботаническому саду и размноженного в условиях культуры. Реинтродуцированные популяции можжевельника казацкого (20 экз.) высажены в виде 5 групп по 4 растения в каждой на крутом склоне горы Зольной в массиве Жигулёвских гор. Дальнейший мониторинг позволит определить оптимальные биотопические условия и дальнейшие возможности реинтродукции данного вида в целях его сохранения в природных условиях.

Тема 3. Оценка влияния комплекса факторов космического полета на семена видов и сортов травянистых растений

Начиная с 2013 г. Ботанический сад принимает участие в сериях экспериментов, проводимых на космических аппаратах (КА). В 2015 г. было продолжено послеполетное изучение действия комплекса факторов космического полета (невесомость, слабое ионизирующее излучение и т.п.) на жизнеспособность семян и начальные этапы последующего онтогенетического развития высших растений.

Предварительные результаты проведенных исследований для экспонированных на борту КА «Бион-М» №1 в течение 30-суточного полета семян 9 видов редких растений природной флоры подтвердили стимулирующее воздействие факторов космического полета на показатели всхожести и на первые стадии вегетации. Обнаружена повышенная грунтовая всхожесть Linum perenne L. и Iris pumila L., а именно, для них показатели всхожести семян выше на 70–80 % от нормы, что им не свойственно. Проведенные полевые опыты с экспонированными на КА «Бион-М» №1 семенами растений природной флоры выявили эффект возрастания неоднородности растений – среди всходов появлялись более крупные экземпляры, опережающие по развитию соседние особи. Анализируя основные закономерности развития растений, можем отметить наиболее общие черты, свойственные экспериментальным растениям: расчленённость онтогенеза и многовariantность развития. Три вида растений - Dianthus andrzejowskianus Kulcz., Polemonium caeruleum L., Linum perenne L. - вступили в генеративную стадию развития, цветли и сформировали семена, которые были высажены и позволили получить выходы (первое поколение потомков «космических» особей)

Продолжена экспериментальная работа по биообъектам, которые были экспонированы на борту КА «ФОТОН-М» № 4. В серии экспериментов включены новые 10 видов редких растений Красной книги РФ, Самарской области и сопредельных с ней субъектов РФ. После экспонирования на КА и возвращенные на Землю семена были высеваны на специально отведенных делянках на экспериментальном питомнике отдела флоры, при обязательном использовании контроля – идентичных образцов семян, не экспонировавшимися на КА. Были изучены показатели полевой всхожести, проводились
мониторинг динамики роста и особенностей морфогенеза растений на начальной и последующих стадиях онтогенетического развития.

8.3. Научно-исследовательские разработки Самарского государственного технического университета

Успешная подготовка высококвалифицированных кадров возможна сегодня только на основе тесной и взаимоопределяющей интеграции образования, науки и производства. Флагманом развития интеграции Самарского государственного технического университета в области экологической безопасности является созданный 2001 году Научно-аналитический центр промышленной экологии (НЦПЭ СамГТУ). Пятнащатилетний юбилей данного структурного подразделения в 2015 году был ознаменован аккредитацией аналитической лаборатории, выполняющей оценку качества, почв, поверхностных и сточных вод, исследование химического состава отходов и масштабными научно-исследовательскими проектами для предприятий как региона Среднего Поволжья, так и Российской Федерации.

В 2015 году специалистами НЦПЭ СамГТУ были выполнены следующие работы:
- Разработана технология обезвреживания и утилизации буровых шламов с получением композитных материалов в условиях отдаленных северных нефтегазовых месторождений для АО "Ванкорнефть".
- Разработана научно-обоснованная проектная документация организации комплексов обезвреживания отходов с получением вторичных ресурсов. Первый подобный комплекс биодеструкции нефтешламовых отходов и замазченных грунтов был запроектирован в 2008-2009 годах для ОАО "Самаранефтегаз". Производительность комплекса составляет 10 тыс.т/год. Данный объект разработан, запатентован и успешно внедрен в производство. Эффективность данной разработки подтверждается её востребованностью на рынке. В частности, в 2015 году разработана проектная документация на комплекс аналогичного функционального назначения для АО "НК НПЗ".
- Подготовлены предпроектные материалы с использованием новейших технологий рекультивации территории для ликвидации источников эмиссии токсичных веществ в окружающую среду.
- Разработана технология детоксикации высокосернистых отходов и остатков одоранта природного газа, позволяющая эффективно обезвреживать отработанные ёмкости его хранения с последующим использованием их в качестве вторичного металлического сырья. Сущность метода заключается в неселективном окислении отходов озоном с получением алкилсерных кислот. В настоящее время прорабатывается возможность их применения в качестве компонентов технических моющих средств.

НЦПЭ СамГТУ является единственным в регионе Среднего Поволжья разработчиком геоэкологических основ ликвидации опасных объектов оборонно-промышленного комплекса, потеряющих свое функциональное назначение. Положения разработанной учеными университета комплексной геоэкологической системы ликвидации бездействующих объектов промышленного строительства и, в частности, авторские технологии блочно-модульной разборки, были реализованы в объектных проектах демонтажа бездействующих предприятий нефтехимического комплекса.

Принципиальной особенностью разработки проектной документации в области экологической безопасности в НЦПЭ СамГТУ является использование авторских
технологий, результатов научно-исследовательских разработок и передового мирового опыта. В настоящий момент на базе кафедры ведутся перспективные разработки по направлениям:

- прямого мониторинга состояния почв с использованием зондовой спектроскопии;
- применения методов дистанционного зондирования земли применение авиа- и космической съёмки в целях экологического мониторинга;
- методы утилизации отработанного бурового раствора и отходов бурения;
- технологии и методы освоения территорий, нарушенных неорганизованным размещением отходов по строительно-хозяйственному направлению.

Сегодня в СамГТУ сложилась крупная научно-педагогическая школа по разработке научных основ технологий обращения с отходами и ресурсосбережения. Основные направления научной работы «Разработка научных основ технологий обращения с отходами и ресурсосбережения» включают в себя:

- разработку научно-обоснованной концепции создания объектов обезвреживания/утилизации отходов;
- разработку систем исследования химического состава и нормирования отходов крупных промышленных комплексов;
- прикладные исследования в области переработки органоминеральных отходов;
- разработку методов и технологий экологического мониторинга;
- разработку научных основ идентификации и оценки экологических рисков для мест накопления техногенных отходов;
- разработку научных основ и практических методов эколого-логистического аудита;
- разработку физико-химических основ ресурсо- и энергосберегающих технологий нефтепереработки и нефтехимии;
- разработку научных основ технологий обращения с отходами и ресурсосбережения;
- экологический мониторинг урбанизированных территорий;
- исследований в сфере виброакустики.

8.4. Научно-исследовательские разработки Самарского государственного социально-педагогического университета

Результаты научно-исследовательской работы профессорско-преподавательского состава Самарского государственного социально-педагогического университета в 2015 году отражены в многочисленных публикациях. Исследования были представлены на 52 международных и 47 всероссийских конференциях. Опубликовано: 21 статья в зарубежных изданиях, 16 в изданиях рекомендуемых ВАК и 87 в других российских журналах и в материалах конференций. Защищена кандидатская диссертация на соискание ученой степени кандидата биологических наук Т.Б. Матвеевой по теме «Комплексная характеристика пригородных лесов окрестностей Самары» (специальность 03.02.08 – экология). Ряд сотрудников участвуют в грантовой деятельности. В 2015 году подано 14 заявок на гранты. Так Российским гуманитарным научным фондом была поддержана заявка на грант д.и.н., проф. А.А. Хоклова по теме исследования «Население Волго-Уралья в период формирования очага культурогенеза на рубеже средней-поздней бронзы». Исследование будет продолжаться в течение 3 лет. Планируются полевые исследования археологических памятников на территории Самарской и Оренбургской областей, республики Казахстан.
В 2015 г. в рамках научной школы естественно-географического факультета «Экологические проблемы и охрана окружающей среды» Самарского государственного социально-педагогического университета проводились следующие научно-исследовательские работы.

Тема «Растительный покров долиноно-водосборных геосистем бассейна Средней Волги»

- «Ведение Красной книги Самарской области». Изучается распространение редких видов растений и животных в Самарской области. Результат: выявлены особенности экологии распространения некоторых редких видов растений и животных на территории Самарской области. Опубликованы исследования в научных журналах.

- «Изучение и анализ флоры окрестностей г. Самары». Исполнитель: к.б.н., ст.преп. Т.Б. Матвеева. Проведено изучение комплексного анализа флоры пригородных лесов г. Самары в систематическом, биоморфологическом, ареалогическом, фитоценотическом аспектах, выявлено произрастание редких видов растений. Выявлено загрязнение пригородных лесов тяжелыми металлами. Опубликованы исследования в научных журналах.

Тема «Биоэкологические особенности растительных и животных организмов, человека в условиях Среднего Поволжья»

• «Фрактальная геометрия биологических систем». Исследована организация и самоорганизация нейронных структур различных групп ядер гипоталамуса кошки, коровы и человека. Результат: изучен механизм самоорганизации нейронных кластеров ядер гипоталамуса человека в раннем эмбриогенезе; на примере вентромедиального ядра прослежена динамика фрактальных свойств кластеров в пре- и постнатальном онтогенезе человека и их корреляции с размерами нейронов. Построена физическая модель, объясняющая механизм самоорганизации нейронных кластеров исследованных ядер гипоталамуса человека в раннем эмбриогенезе. Опубликованы исследования в научных журналах. Идана монография: Молчатский С.Л. Фрактальная организация и самоорганизация нейронных структур мозга. Самара: ПГСГА, 2015. 133 с.

• «Транспортная экология». Цель работы – изучение влияния транспорта на загрязнение почв тяжелыми металлами. Результат: выявлено влияние железнодорожного транспорта на характер загрязнения почв тяжелыми металлами, дана оценка их распространения в прижелезнодорожной полосе, характере влияния естественных и искусственных преград на характер их распространения в Самарской области. Опубликованы исследования в научных журналах.

• «Экологическая антропология: особенности физического развития представителей рода «Homo» в Поволжье от палеолита до современности». Цель работы – получение объективных данных о процессах расогенеза в Самарском крае с эпохи каменного века до современности. Результат: антропологическая коллекция, написаны 3 статьи в журналах Scopus, выиграны 2 гранта.

Тема «Взаимодействие между элементарными симбиотическими ассоциациями в экосистеме кораллового рифа»

Исполнитель - к.б.н., доцент К.С. Ткаченко. Целью работы является изучение коралловых сообществ и их способности к самовосстановлению в условиях глобальных климатических изменений и усиления антропогенной нагрузки. Результат: экспедиция в акваторию залива Нячанг (Центральный Вьетнам), участие в научном семинаре по экологической оценке статуса коралловых сообществ у островов Че, Мот и Там в акватории залива Нячанг (Центральный Вьетнам). Опубликованы исследования в научных журналах.

8.5. Научно-исследовательская деятельность на базе ФГБУ «Жигулевский государственный природный биосферный заповедник»

Согласно Положению о Красной книге Самарской области на жигулевском побережье проводятся популяционные исследования по структурной организации сообществ летучих мышей и их состояния на ключевых территориях размножения методом массового кольцевания с многократными повторными отловами (руководитель с.н.с. В.П. Вехник). За колониями редких видов, включенных в региональную и федеральную Красные книги проводятся дистанционные наблюдения высокотехнологичными методами радиотелеметрии.

В 2015 году продолжалась работа в рамках подготовки Второго Европейского Атласа гнездящихся птиц и Атласа гнездящихся птиц Европейской России. Исследования проводились на территориях муниципальных районов Ставропольский, Волжский, Безнечукский, Красноярский, Кинельский, Кошкинский, Елховский, Большеглушицкий и Большечерниговский в границах квадратов 39UU3, 39 UVT3, 39UVT4, 39UVA4, 39UVU1, 39UVV1, 39UVV3 европейской части России (научный руководитель к.б.н. Лебедева Г.П.). Цель работы - составление списка видов птиц, встречающихся в каждом квадрате в гнездовой период с указанием их статуса и оценкой численности. В результате исследований получены новые данные о видовом составе и распределении птиц.
Самарской области, о состоянии их мест обитания. В том числе сведения о редких для области видах: большой белой цапле, лебеде-шипуне, огаре, могильнике, орлане-белохвосте, ходулочнике, усатой синице, обыкновенном реземе, белокрылой крачке, чернолобом сорокопуте. Выявлены новые для области виды.

Продолжались работы по теме «Исследование растительности в рамках мониторинговых исследований на эккурсционном маршруте Стрельной горы после его обустройства» (науч. руководитель - зав. кафедрой экологии, ботаники и охраны природы проф. Л.М. Кавеленова, исполнители - от СамГУ - ст.преп. Н.В. Власова, ст.преп. Е.С. Корчков, инж. Т.А. Корчкова, от заповедника - с.н.с. Т.Ф.Чап). Осуществление мониторинговых исследований в 2013, 2014 и 2015г. позволило выявить базовый список видов высших растений, которые формируют растительные ассоциации. С учетом трехлетнего выявления видов, наиболее активно участвующих в образовании аспекта в различные сроки в пределах вегетационного периода, установлено произрастание на научных станциях в зоне эккурсционной тропы высших растений 160 видов, относящихся к 130 родам и 39 семействам. По сравнению с предыдущими исследования количество видов и семейств растений, произрастающих на исследованной территории сократилось. Ведущие 10 семейств, лидирующие по числу видов: Asteraceae, Poaceae, Papilionaceae, Brassicaceae, Rosaceae, Caryophyllaceae, Liliaceae, Apiaceae, Rubiaceae, Lamiaeae. Среди выявленных 160 видов представлено 24 редких, в том числе 24 вида, включенных в Красную книгу Самарской области, 5 видов, включенных в Красную книгу РФ. Достаточно длительное воздействие рекреации, начавшееся задолго до строительства настила, привело к внедрению в растительный покров научных стационаров видов-рудералов. Их число составляет 15, они присутствуют практически на всех пробных площадях и трансектах. В процессе обследования 2015 г. были скорректированы геоботанические описания растительных сообществ на трансектах и учетных площадках, включавшие оценку нарушенности поченно-растительного покрова, вытоптанности, каменистости. Было установлено, что на пробных площадях научных стационаров в формировании растительного покрова участвует от 43 до 60 видов.

Растительный покров, нарушенный в процессе строительства настила, восстанавливается под настилом за счет разрастания особей, располагающихся вблизи настила, и развития образовавшихся всходов. На пробных площадях, граничащих с лесными сообществами, в этом наиболее активно участвуют кустарниковые виды (Euonymus verrucosa, Cotoneaster melanocarpus, Cerasus fruticosa, Rosa majalis) и такие травянистые растения как Hieracium virosum, Vincetoxicum stepposum, лазурник трехлопастной «врастающие» под настил и выходящие из-под него. На пробных площадях, граничащих со степными сообществами, основное участие в восстановлении растительного покрова принимают Scorzonera hispanica, Hieracium virosum, Potentilla arenaria, Thymus zhegulensis, Echinops ritro, Carex pediformis, Centaurea carbonate, Gypsophila juzepczuksi, Elytrigia loliiodes, Artemisia campestris.

Отмеченные в 2014 году процессы зарастания нарушенных территорий на многих пробных площадях не смогли полноценно реализоваться в 2015 году. Планомерное зарастание и общее сокращение нарушенных территорий наиболее успешно происходило только на таких участках, где рельеф и общее развитие растительного покрова препятствуют выходу экскурсантов с настила на открытую поверхность. На ряде пробных площадях наряду с процессами зарастания нарушенной территории происходит и вытаптывание. Посетители в поиске лучших видов покидают настил и протаптывают новые тропинки к обзорным точкам на склоне, а также в поиске мест для уединения. К сожалению, экскурсанты покидают настил в любых местах, где им это удобно сделать. Таким образом, зафиксировано восстановление растительных сообществ там, где они были нарушены в результате рекреационного воздействия и в ходе строительства настила, и образование новых нарушенных участков. Также было установлено, что негативное
воздействие рекреации на растительный покров продолжается. На склоне сформированные (вытоптаны) новые тропы, проходящие вдоль настила и от него, ведущие к обзорным точкам. В начале тропы (участок ковыльной степи) к концу лета от многочисленных куртин ковыля сохранилась лишь центральная часть кустиков, все между ними оказалось вытоптанным. Местами происходит также восстановление нормального состояния лишайникового покрова: лишайниковые сообщества каменистых степей, во время покраски настила, покрытые с поверхности слоем краски, постепенно освобождаются от нее и приобретают естественный облик. Ежегодная оценка состояния растительного покрова на НС в начале периода вегетации в каждый из трех лет наблюдений обнаруживала довольно неплохое состояние популяций растений, к концу вегетационного периода картина в ряде точек становилась ужасающей. Это отчасти связано с особенностями сезонного развития растений данных биотопов, но также определяется особенностями эколого-рекреационного воздействия посетителей.
В 2015 году в области при активном участии Министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области (Министерство) продолжено формирование современного подхода к разрешению экологических проблем региона, основанного на обеспечении активного участия в их решении населения всех возрастов, социальных слоев и профессиональных групп. На этой основе выстраивалась система принятия и реализации управленческих решений, основанных на достаточной осведомленности природопользователей об экологических последствиях их хозяйственной деятельности. Особая роль в формировании активной природоохранной позиции отводится образованию, которое призвано не только давать экологические знания, но и формировать у населения (в том числе у подрастающего поколения) экологическую культуру в целом.

9.1. Эколого-просветительские мероприятия регионального уровня

Региональная экологическая газета «Живая вода» выходила при содействии Правительства Самарской области, администраций городов и районов области, природоохранных учреждений, ряда крупных и малых предприятий. В 2015 году было издано 3 номера газеты «Живая вода» и распространено по спискам целеевой бесплатной рассылки, в том числе в учебные заведения и библиотеки региона; Важным, практически интерактивным каналом эко-общения с жителями области и информирования её населения об актуальных природоохранных проблемах региона, осуществляемой экологической деятельности, являлся сайт министерства лесного хозяйства, охраны окружающей среды и природопользования Самарской области www.priroda.samregion.ru;

Источником официальной всесторонней информации о состоянии окружающей среды, природных ресурсах, проводимой в области экологической деятельности является издаваемый министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области ежегодный «Государственный доклад о состоянии окружающей среды и природных ресурсов Самарской области». Доклад за 2014 год направлен во все органы власти и управления, территориальные управления федеральных природоохранных органов, ВУЗы, научные организации, общедоступные библиотеки, общественные экологические организации, в органы власти ряда субъектов Федерации. Электронная версия доклада размещена на официальном сайте Министерства, а так же направлена в аппарат Правительства Самарской области.

Актуальными формами совершенствования системной деятельности по повышению уровня экологической культуры и знаний населения, его практического участия в конкретной природоохранный деятельности является целевой комплекс разнообразных мероприятий (конкурсов, акций, месячников, субботников, карнавалов и др.) экологической направленности, организуемых Министерством, другими органами Правительства Самарской области, администрациями муниципальных образований.

Традиционной и действенной формой практической природоохранной деятельности являются месячники и субботники по уборке территорий муниципальных образований. Совместно с органами местного самоуправления, в 2015 году было организовано проведение весеннего и осеннего месячников по очистке территорий муниципальных образований области, в которых приняли участие 450 тысяч человек. Убраны территории общей площадью более 9,5 тысяч га, вывезено 100 тысяч тонн отходов. Кроме того, в честь празднования Дня Волги 22 мая 2015 года была организована
акция по очистке территории особо охраняемой природной территории регионального значения «Древостой дуба естественного происхождения». Компанией «Эковоз» были предоставлены инвентарь и спецтехника. Совместными усилиями удалось собрать и вывезти 20 тонн отходов. Проведение месячников и субботников является необходимой и реальной работой по санитарной очистке территорий муниципальных образований от отходов.

Среди мероприятий, направленных на экологическое просвещение и повышение уровня экологической культуры населения региона, как наиболее крупные и значимые следует выделить ежегодно организуемое Министерством проведение Дней защиты от экологической опасности (Дни защиты) на территории Самарской области. В Днях защиты принимали участие все 10 городских округов и 27 муниципальных районов региона. Их проведение способствовало массовому привлечению жителей региона к решению вопросов охраны окружающей среды, развитию экологически направленного мировоззрения, повышению уровня экологической культуры населения. В 2015 году суммарное число участников мероприятий областного и муниципального уровней достигло 1 586 314 человек. Подсчитать абсолютное число жителей Самарской области, задействованных в Днях защиты от экологической опасности, невозможно, поскольку для этого нужны полные списки участников всех многочисленных мероприятий и акций и их сверка (чтобы исключить людей, участвующих в нескольких мероприятиях). Поэтому просчитывается показатель активности населения, представляющий собой процент суммарного числа участников от численности населения Самарской области. Этот показатель в 2015 году достиг 49,4 процента.

Мероприятия в рамках Дней защиты от экологической опасности, проведенные на региональном уровне

1. Региональные конкурсы.

 1.1. Ежегодный региональный конкурс «Эколидер-2014». Конкурс проводится министерством лесного хозяйства, охраны окружающей среды и природопользования Самарской области с 2000 года в целях выявления и стимулирования муниципальных образований, организаций и граждан, имеющих значительные достижения в области охраны окружающей среды и природопользования на территории области, для распространения положительного практического опыта их работы и формирования экологической культуры населения в целях выявления и стимулирования муниципальных образований, организаций и граждан, имеющих значительные достижения в области охраны окружающей среды и природопользования на территории Самарской области. На конкурс «Эколидер-2014» поступило рекордное число заявок – 345 заявок. Самой многочисленной впервые стала номинация «Энтузиаст». В интернет-голосовании на звание «Народный Эколидер» за участников конкурса было отдано около 85000 голосов.

 Подведение итогов и награждение победителей состоялось на торжественной церемонии, посвященной празднику «День эколога» 3 июня 2015 года в Самарской государственной филармонии. Праздник был также посвящен Году света и световых технологий, объявленному в 2015 году Организацией объединенных наций. Участникам праздника был продемонстрирован специально изготовленный к Дню эколога 7-минутный фильм «Зелёная энергия», посвященный возобновляемым источникам энергопотребления и их использованию на территории Самарской области.

 На мероприятии были вручены знаки «Заслуженный эколог Самарской области», почетные грамоты и благодарности Губернатора Самарской области, награждены победители регионального конкурса «Эко-Лидер-2014».

 1.2. Региональный конкурс по итогам акции «Неделя экологических знаний» проводится в регионе с 2009 года в целях стимулирования просветительской, образовательной и воспитательной деятельности экологической направленности, популяризации акции «Неделя экологических знаний» и Всемирных дней защиты от экологической опасности на территории муниципальных образований области.
В 2015 году на региональный тур конкурса от муниципальных образований было выдвинуто 17 лучших школ, из числа которых было выбрано 4 победителя.

1.3. Региональный конкурс и выставка детских творческих работ на экологическую тематику проводится ежегодно на территории области с 2008 года в целях экологического воспитания и развития творческого потенциала подрастающего поколения, распространения практического опыта образовательной и воспитательной работы в этой сфере и формирования экологической культуры населения. В 2015 году Конкурс носил название «Заповедный символ» и был приурочен к новому региональному празднику, учрежденному законом Самарской области от 10 ноября 2014 года N104-ГД «О памятных датах Самарской области» - Дню особо охраняемых природных территорий в Самарской области (19 августа). В конкурсе приняли участие 910 юных художников.

Работы лауреатов конкурса демонстрировались в рамках выставки детских творческих работ на экологическую тематику. Выставка проходила 19 августа в Зимнем саду Самарской Губернской Думы, где был организован круглый стол на тему: «Особо охраняемые природные территории Самарской области. Современное состояние. Направление развития». Круглый стół проводился совместно с комитетом по ЖКХ, ТЭК, нефтехимии и охраны окружающей среды Самарской Губернской Думы. Министр Александр Иванович Ларионов вручил награды победителям регионального конкурса детских творческих работ «Заповедный символ».

1.4. Региональный конкурс по итогам проведения Дней защиты от экологической опасности на территории муниципальных образований Самарской области проводится с 2010 года. В этом конкурсе оценивается весь комплекс мероприятий, проводимых в рамках Дней защиты: системность организации акции, объемы финансирования, число участников, результативность проведения акции.

В 2015 году в конкурсе приняли участие 23 городских округа и муниципальных районов Самарской области.

1.5. Конкурс среди управлений Государственного бюджетного учреждения Самарской области «Самаралес» на лучшую организацию места отдыха в придорожной полосе. Среди важнейших задач работников леса - найти и внедрить формы грамотного и гармоничного взаимодействия человека и лесной экосистемы. Одна из таких форм – организованные места отдыха в лесу. В губернии уже обустроено около 350 таких площадок. В 2015 году впервые был организован конкурс на «Лучшее обустройство места отдыха в лесу». В конкурсе приняли участие 10 управлений и отделений Государственного бюджетного учреждения Самарской области «Самаралес». Каждая новая площадка оборудована местом отдыха со столиком, навесом от дождя, местами для разведения костра и для сбора бытовых отходов. И везде установлены аншлаги, призывающие беречь природу, диких животных, не допускать лесных пожаров. Лучшим в конкурсе на организацию места отдыха в лесу признан коллектив Ново-Буйянского управления Государственного бюджетного учреждения «Самаралес», насчитывающий 106 человек.

2. Ежегодный региональный экологический карнавал. На территории Самарской области с 2005 года организуется экологический карнавал, имеющий статус регионального. Проведение карнавала способствует привлечению внимания широких слоёв общественности к экологическим проблемам региона, укреплению имиджа регионального природоохранныго движения.

15 августа 2015 года в Похвистневском районе Самарской области состоялся региональный экологический карнавал «Страна СветоФория». Организатором карнавала выступило министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области при участии ООО «Газпром трансгаз Самара», неправительственного экологического Фонда имени В.И. Вернадского, администрации муниципального района Похвистневский и ГБУ СО «Природоохранный центр». Концепция карнавала «Страна СветоФория» была связана с Международным годом света
и световых технологий, провозглашенным Организацией Объединенных Наций в 2015 году.

9.2. Система экологического образования и просвещения в вузах Самарской области

Повышению уровня экологического образования, целям экологического просвещения и воспитания, вовлечения в общественное экологическое движение населения Самарской области в 2015 году способствовало функционирование в вузах экологических факультетов, кафедр, преподавание специальных дисциплин природоохранных направленностей (Самарский государственный университет, Поволжская государственная социально-гуманитарная академия, Самарский государственный аэрокосмический университет, Самарский государственный архитектурно-строительный университет имени академика С.П. Королева (национальный исследовательский университет), Самарский государственный технический университет, Самарский государственный экономический университет, Тольяттинский государственный университет, Волгский университет им. В.Н. Татищева и другие), а также участие студентов региональных вузов в разработке и реализации практических проектов, направленных на решение экологических проблем, в частности — разработке дипломных работ по природоохранной тематике, получение областных и муниципальных грантов на реализацию экологических проектов.

Самарский государственный технический университет.

ФГБОУ ВО «Самарский государственный технический университет» (СамГТУ) является одним из крупнейших высших учебных заведений Среднего Поволжья, образовательная и научная сфера деятельности которого охватывают практически все отрасли хозяйства. В последние годы в силу объективно сложившейся ситуации во всём мире особое значение приобретает работа в области природоохранных технологий и инженерной защиты окружающей среды. Ведущим в развитии этого направления является коллектив кафедры «Химическая технология и промышленная экология» (ХТиПЭ). Всего же в области промышленной экологии в СамГТУ сегодня плодотворно работают более 10 профессоров и докторов наук, 20 доцентов и кандидатов наук.

В 2015 году кафедра отметила 20 летний юбилей с момента начала подготовки инженеров-экологов. За последние годы, отвечая на динамичные запросы общества, экологическая составляющая образовательного процесса в СамГТУ была существенно расширена в 2015 году и в настоящее время представлена следующими программами:

- подготовка бакалавров по направлению 18.03.02 — «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» по профилю "Охрана окружающей среды и рациональное использование природных ресурсов";
- подготовка магистров "Промышленная экология и рациональное использование природных ресурсов" и "Техносферная безопасность";
- подготовка кадров высшей квалификации (аспирантов) по специальностям "Экология" и "Геоэкология";
- программа повышения квалификации педагогических работников государственных образовательных учреждений начального профессионального образования и среднего профессионального образования по направлениям "Экология и рациональное природопользование";
- программа экологического образования в рамках подготовки бакалавров и магистров по всем специальностям СамГТУ;
- программа подготовки кадров высшей квалификации по направлением 03.02.08 "Экология" и 25.00.36 "Геоэкология".

Помимо образовательной деятельности в рамках государственных образовательных программ в стенах кафедры с 2015 года активно развивается экологическое
наставничество юных жителей Самарской области. В частности, в ноябре 2015 года Министерством образования и науки Самарской области при участии группы компаний "ЭкоВоз" в стенах СамГТУ проведен гала-концерт областного творческого конкурса "Школьная экологическая мозаика", организованного с целью формирования у молодежи Самарской области бережного отношения к окружающей среде и родному краю.

В январе 2015 года в средней школе № 93 (город Тольятти) состоялась региональная научно-практическая конференция «Современные подходы и технологии экологизации образования». Одним из ее организаторов стала кафедра «Химическая технология и промышленная экология» ФГБОУ ВО СамГТУ. В рамках конференции было подписано соглашение о создании на базе школы № 93 профильного экологического класса по модели «Школа — вуз — предприятие». Вузом-партнером выступил СамГТУ, в качестве базового предприятия — группа компаний «ЭкоВоз».

В 2015 году в СамГТУ продолжил активно работать Независимый аттестационно-методический центр «Экотехбезопасность» (НАМЦ), аккредитованный в единой системе оценки соответствия на объектах подконтрольных Федеральной службе по экологическому, технологическому и атомному надзору РФ. В НАМЦ осуществляется подготовка специалистов предприятий в области обеспечения экологической безопасности по следующим дополнительным профессиональным образовательным программам повышения квалификации:

- «Обеспечение экологической безопасности руководителями и специалистами общехозяйственных систем управления»;
- «Обеспечение экологической безопасности при работах в области обращения с отходами I - IV класса опасности»;
- «Обеспечение экологической безопасности руководителями и специалистами экологических служб и систем экологического контроля»;
- «Рекультивация нарушенных земель».

В сентябре 2015 года в СамГТУ состоялся V международный экологический конгресс (VII международная научно-техническая конференция) «ELPIT-2015». В организации конгресса кроме СамГТУ приняли участие Самарский научный центр РАН, Тольяттинский государственный университет, Институт экологии Волжского бассейна РАН и зарубежные учреждения: Неаполитанский университет (Италия), Орден инженеров Флоренции, Рижский технический университет. В качестве участников и почетных гостей на ELPIT-2015 прибыли экологи из Греции, Франции, Италии. Для заочного участия прислали свои доклады специалисты из США, Латвии, Украины и других стран. В рамках ELPIT-2015 прошел ряд симпозиумов, международные круглые столы, инновационный форум молодых ученых «Young ELPIT», международная выставка технологий и оборудования в области экологии и безопасности жизнедеятельности.

26 сентября 2015 года в поселке Агой Туапсинского района завершилась XII международная научно-практическая конференция «Ашировские чтения». Конференция была посвящена проблемам развития и совершенствования нефтегазодобывающей отрасли России и зарубежья.
Самарский государственный социально-педагогический университет.

В 2015 году в рамках развития и совершенствования системы экологического образования всех уровней на базе естественно-географического факультета вуза проведены следующие научно-исследовательские работы:

- «Применение методики обучения в сотрудничестве при организации практической деятельности учащихся по биологии» (исполнители: к.п.н., доц. Н.Г. Боброва, к.п.н., доц. Е.А. Макарова). Рассматриваются возможности применения методики обучения в сотрудничестве при организации лабораторных работ на уроках биологии. Работа носит экспериментальный характер путем разработки заданий для школьников, включения их в учебный процесс, проверки их эффективности и изучения состояния проблемы путем анкетирования. Результат: выявление методических условий организации практической деятельности учащихся с использованием технологии обучения в сотрудничестве. Опубликованы исследования в научных журналах.

- «Профессиональная подготовка бакалавров и магистров в условиях ФГОС ВО» (исполнитель: к.б.н., доц. А.А. Семенов). Целью работы является разработка системы оценивания результатов обучения бакалавров и магистров по направлениям подготовки естественнонаучного профиля. Результат: разработана система оценивания в условиях ФГОС ВО. Опубликованы исследования в научных журналах.

- «Экологическое образование и воспитание в процессе обучения химии в вузе и школе» (исполнители: д.п.н., проф. Л.В. Панфилова, к.п.н., доц. Е.Г. Нелюбина, к.п.н., доц. Л.Г. Сафина). Целью работы является разработка новых подходов к экологическому образованию школьников и студентов в процессе обучения химии. Результат: разработаны методические приемы по формированию экологической компетентности в процессе обучения химии. Опубликованы исследования в научных журналах.

- «Инклюзивное экологическое образование и воспитание школьников» (исполнители: д.п.н., проф. Т.М. Носова, к.р.н., доц. Л.А. Кольванова). Цель работы – реализация плана работы методической школы по экологическому образованию и воспитанию детей с ограниченными возможностями здоровья. Результат: выработаны рекомендации по формированию экологической культуры детей с ограниченными
возможностями здоровья. Опубликованы исследования в научных журналах. Идано учебное пособие для студентов-магистрантов.

На факультете активно развивается и студенческая наука в рамках студенческого научного общества. 85 студентов приняли участие в научных мероприятиях и выступили со 101 докладом на конференциях различного уровня организации. По результатам работы опубликовано 111 статей, из которых 28 в зарубежных журналах и сборниках конференций. 2 студента стали победителями: во всероссийском конкурсе научно-исследовательских работ студентов по биологии, экологии и методике обучения («ВИМ – 2015») и конкурсе на лучшую научно-исследовательскую работу студентов вуза. Сертификатами участника конкурсов различных уровней организации стали 71 студент, 12 студентов подали свои заявки на гранты.

Также в 2015 году на факультете были организованы 4 научно-практических конференции:

- VI Всероссийская научно-практическая конференция с международным участием «Эколого-географические проблемы регионов России», посвящённая 80-летию со дня рождения заведующего кафедрой географии ПГСГА, к.г.-м.н., доцента В.В. Шнырева (15.01.2015);
- II Всероссийская научно-практическая конференция с международным участием «Структурно-функциональная организация и динамика растительного покрова», посвящённая 80-летию со дня рождения доктора биологических наук, профессора Владимира Ивановича Матвеева (30.01.2015);

Особую роль в формировании экологического сознания играет проведение различных олимпиад, конкурсов и конференций для школьников, студентов и учителей. Профессорско-преподавательским составом факультета в 2015 году было организовано 3 мероприятия:

- II Всероссийский открытый конкурс научно-исследовательских работ студентов по биологии, экологии и методике их преподавания «ВИМ – 2015». Цели конкурса – развитие у студентов интереса к научно-исследовательской деятельности и будущей профессии; повышение качества профессиональной подготовки учителей биологии и экологии; создание условий для поддержки одаренной молодежи, выявление ее творческих способностей в области биологии, экологии и методики обучения; формирование кадрового потенциала для исследовательской, производственной, административной и предпринимательской деятельности. Результатом конкурса явилось участие около 30 студентов вузов РФ, а лучшие методические разработки были опубликованы в межвузовском сборнике научно-исследовательских работ студентов «Globularia».
- VII Областной конкурс «Лидер школьного биоэкологического образования Самарской области». Цель конкурса – выявление, поощрение и распространение опыта
работы лучших учителей биологии и педагогов дополнительного образования Самарской области. Победителем или призёром конкурса может стать любой учитель биологии и педагог дополнительного образования Самарской области, который достиг значительных успехов в профессиональной деятельности. Результатом конкурса явилось участие более 20 учителей, лучших из которых был награжден грамотой и ценным призом. Он же провел мастер-класс для студентов факультета и участников конкурса.

- III Международный дистанционный конкурс «Экологический марафон XXI столетия» Цель конкурса – естественнонаучное и творческое развитие учащихся. Привлечение внимания общественности к экологическим проблемам окружающей среды. Формирование позитивного и бережного отношения к природе у подрастающего поколения. Создание условий для профессиональной ориентации учащихся. Результатом явилось участие более 500 школьников, лучшие из которых были награждены грамотами и ценными призами.

Большую работу по формированию экологической культуры населения проводят сотрудники Зоологического музея СГСПУ им. Д.Н.Флорова. Он по праву считается лучшим в Поволжье и одним из наиболее крупных научных и просветительских центров России, является членом ассоциации естественно-исторических музеев России, включен в справочник «Все музеи России» и в реестр естественнонаучных музеев России, входит в состав научно-технических музеев г. Самара, в 2010 году включен в список уникальных объектов Министерства образования и науки РФ. В 2015 году на базе музея проведены 212 экскурсий. Общее число экскурсантов превысило 3800 человек. Деятельность зоомузея активно освещается в средствах массовой информации. Научная деятельность музея (под руководством к.п.н. В.Г. Шведова) направлена на исследование видового разнообразия фауны Среднего Поволжья и разработку современных концепций формирования экологической культуры средствами естественнонаучного музея.

На базе факультета активную просветительскую деятельность осуществляет палеоантропологическая лаборатория (руководитель – д.и.н., проф. А.А. Хохлов). В ней сосредоточены разнообразные краниологические материалы, а также специальное оборудование для их сбора, изучения и систематизации. В фондах лаборатории содержатся коллекции черепов и посткраниальных скелетов человека от мезолитического времени (8000 лет до н.э.) до средних веков, происходящих с территорий Самарской, Оренбургской, Саратовской, Челябинской областей и других субъектов РФ. Составлен электронный каталог находок, включающий около 2350 объектов. В 2015 году на базе лаборатории проведены 36 экскурсий для различных социальных групп населения. На факультете существует кабинет-музей геологии и палеонтологии, в котором располагается коллекция минералов и горных пород с территорий РФ и стран ближнего зарубежья – более 5 тыс. экземпляров, а также большое количество палеонтологического материала – более 2 тыс. экземпляров. В 2015 году на базе лаборатории проведены 7 экскурсий для различных социальных групп населения. Также существует фундаментальный гербарий, который включен в Web-портал «Генетические и биологические (зоологические и ботанические) коллекции РФ» и насчитывает более 5000 гербарных листов. Гербарий является базой для обучения и проведения научной работы сотрудников, студентов и аспирантов. Так в 2015 г. его посетили более 60 человек.

Коллективом естественно-географического факультета в 2015 г. были организованы курсы повышения квалификации учителей биологии, химии и географии Самарской области на основе именных образовательных чеков, участие в которых приняли 98 учителей.

образование», «Химическое образование», «Географическое образование». Подготовка кадров высшей научной квалификации осуществляется в аспирантуре по специальностям 13.00.02 – теория и методика обучения и воспитания (химия, экология), 13.00.08 – теория и методика профессионального образования, 03.02.01 – ботаника, 03.03.01 – физиология.

Факультет является базовым для Самарского отделения Русского ботанического общества (возглавляет д.б.н., проф. В.В.Соловьева), Самарского отделения Русского энтомологического общества (возглавляет к.б.н., доц. С.И.Павлов), Самарского отделения Союза охраны птиц России (возглавляет к.б.н., доц. С.И. Павлов). Главные направления научной работы является выявление редких видов, изучение их биологии, выявление новых местообитаний, вопросы мониторинга природных экосистем и городской среды, выделение охраняемых растительных объектов и контроль за их состоянием, природная и антропогенная динамика животного и растительного мира.

Ежегодно экологической тематике посвящаются все работы направления подготовки Экология и природопользование, профиль: «Экология». Все они имеют не только теоретическое, но и прикладное значение. Некоторые работы рекомендуются к внедрению в практику экологической работы районных администраций и промышленных предприятий области.

9.3. Экологическое просвещение и воспитание на базе ООПТ, расположенных на территории Самарской области

Сотрудниками учреждений, осуществляющих охрану ООПТ, также проведена большая работа по экологическому образованию, просвещению и воспитанию.

Ботанический сад Самарского государственного аэрокосмического университета имени академика С.П. Королева (национальный исследовательский университет).

Ботанический сад предоставляет коллекционные фонды для знакомства студентов и школьников с мировой флорой (свыше 3,5 тыс. таксонов). Кафедра экологии, ботаники и охраны природы госуниверситета, а также кафедры педагогического и медицинского университетов используют коллекции ботанического сада в качестве базы для проведения занятий по целому ряду дисциплин. Обучающиеся в Самарском университете специалисты, бакалавры и магистры проходят на базе сада учебные и производственные практики, выполняют курсовые и квалификационные работы. В последнее время коллекции сада стали базой для подготовки магистров и аспирантов.

В 2015 г. сотрудниками Ботанического сада было проведено 150 групповых экскурсий по оранжерее и дендрарию (около 10 тыс. человек с экскурсиями и индивидуально). Проводятся также благотворительные экскурсии для детей-сирот и пенсионеров. Всего же Ботанический сад посетило свыше 100 тыс. человек. Для проведения тематических экскурсий в саду в Ботаническом саду разработаны новые образовательные программы.

Продолжалась работа с волонтерами ООО «СамараТрансГаз», которые оказали существенную помощь в уходе за насаждениями дендрария.

Отделом флоры налажено многолетнее творческое сотрудничество на договорной основе с учителями школ городского округа Самара и области по программе «Сохранение биологического разнообразия Самарской области». Посадочный материал редких видов (семена и живые растения) используется для создания экспозиций на пришкольных участках, для опытной работы и наблюдений школьников. Участники программы принимают активное участие в конкурсах, учебно-научных семинарах и конференциях, организуемых Самарским университетом. На регулярно проводимых встречах они представляют информацию о результатах своей интродукционной работы с растениями и семенами, полученными из Ботанического сада.
Коллектив Ботанического сада каждый год поддерживает иницитиву Международного совета ботанических садов по охране растений о проведении 18 мая «Дня защиты растений» («Plant conservation day»). Сотрудники сада принимали участие в осуществлении экологических акций по благоустройству территории и оранжерей Ботанического сада, проводят экологические субботники (например, Всероссийский субботник «Зеленая Россия», работа с волонтерами ООО «Газпром Трансгаз Самара»).

Коллекции отделов и семенной лаборатории используются для повышения экологической грамотности и развития знаний о редких и исчезающих видах среди студентов, учащихся образовательных учреждений, различных организаций и населения города и области.

ФГУ Национальный парк «Самарская Лука».

Для осуществления эколого-просветительской деятельности в национальном парке созданы эколого-просветительский центр «Самарская Лука» и информационный центр «Дом-музей Лисьь» в городе Жигулевск; информационный центр в городе Самара; информационные центры в конторах лесничеств (в сёлах Ширяево, Большая Рязань, Средний Солнеч, Бахилово, Подгоры, Рождествено, Жули, Мордово). В 2015 году открыт информационный центр «Музей летучей мыши» в селе Ширяево.

В мероприятиях, организованных и проведенных национальным парком приняли участие свыше 140 тыс. человек. Были организованы: Всероссийская акция «Марш парков»; детский литературно-художественный конкурс «ПОЧва-житель»; конкурс детских поделок «Кто живёт под землей?»; конкурс рисунков на асфальте; 24-й Всероссийский экологический марафон «Самарская Лука»; ежегодная акция «День Волги» (совместно с компанией «Coca-Cola Hellenic»); круглый стол в Самарском Союзе журналистов «Экотуризм и сохранение биоразнообразия на Самарской Луке: проблемы и перспективы»; 11 лекций о птице года – горихвостке, о правилах поведения при встречах с дикими животными, о национальном парке; 208 экскурсий; 37 бесед для учащихся образовательных учреждений; 26 выставок, организованных национальным парком в городах Самара, Тольятти, Жигулевск, селах Самарской Луки; 10 выставок животных «Рептилии и амфибии Поволжья»; фестиваль народных традиций «Жигулевская вишня-2015» в с.Ширяево; 5-й фестиваль «Мир бардов».

Подготовлено 135 научно-популярных и пропагандистских статей о Национальном парке. Опубликовано 482 статьи в различных электронных СМИ. Персональный сайт национального парка за год посетило более 100 000 человек. В 2015 году в ежегодно проводимом пресс-туре на тему: «Новые рекреационные объекты в рамках проекта «Жигулевская кругосветка» в селе Ширяево приняли участие 80 журналистов. Тираж рекламной, информационной и справочной продукции составил 5803 экземпляра.

ФГБУ «Жигулевский государственный природный биосферный заповедник имени И.И. Спрыгина».

Два экскурсионных маршрута заповедника посетило 173 организованные группы (4370 человек); общее количество человек, посетивших территорию заповедника в целях познавательного туризма в 2015 году, составило 53350 человек.

В 2015 году построен и запущен первый объект экскурсионно-познавательного комплекса «Бахилова Поляна» - «Городок барсуков».

ФГБУ «Национальный парк «Бузулукский бор».

Эколого-просветительская деятельность в национальном парке нацелена на обеспечение познавательной информацией и научно-популярными знаниями о природных экосистемах и объектах природного и историко-культурного наследия на его территории и направлена на самые широкие слои населения: местных жителей и посетителей с близлежащих и отдаленных районов и городов. Одной из приоритетных категорий являются учащиеся, в первую очередь школьники. Эколого-просветительская работа ведется в содружестве с различными социальными структурами: образовательными учреждениями, природоохранными государственными органами, органами местного самоуправления, общественными организациями.

На территории национального парка функционирует 3 школьных лесничества: Борское школьное лесничество «Борок», Богатовское школьное лесничество «Юный эколог», Колтубанское школьное лесничество «Зеленый патруль». Также в учреждении организован экологический кружок «Росточек».

Экскурсионно-туристическая деятельность в национальном парке представлена туристическими маршрутами протяженностью от 50 до 125 км: «В гостях у пасечника», «Заповедное кольцо», «Слияние двух рек», тропа «Сосна-великанша».

За период 2015 года организовано дополнительно 2 оборудованных места отдыха, 1 стоянка для палаточного лагеря, 2 парковки для автомашин, 1 смотровая площадка.

Проводятся экологические мероприятия, направленные на привлечение внимания к проблемам охраны природы, повышение экологической культуры населения: акция «Покормите птиц», возрождение родника «Заповедный», акции по очистке и благоустройству территории национального парка.

Два раза в год выходит информационно-познавательный журнал «Зеленая жемчужина». Осуществляется изготовление и реализация сувенирной продукции национального парка. Общее число посетителей национального парка за 2015 год составило 11752 человека.
ЗАКЛЮЧЕНИЕ

Государственные доклады о состоянии окружающей среды и природных ресурсов Самарской области (далее – Доклад) используются для базирующихся на официальных данных и сведениях оценок, итогов, прогнозов экологической и, связанной с ней, социально-экономической проблематики. Ввиду ограниченности набора показателей системы мониторинга состояния окружающей среды и надзора за природоохранный деятельностью, материалы Государственного доклада не могут отразить всех особенностей и многообразия изменений состояния окружающей среды. Тем не менее, данные, приведенные в Государственном докладе о состоянии окружающей среды и природных ресурсов Самарской области за 2015 год и предыдущие годы, наиболее полно и объективно отражают происходившие на территории региона геоэкологические процессы: динамику и характер антропогенного воздействия на окружающую среду, объем и виды природопользования и использования природных ресурсов, состояние растительного и животного мира, другие основные экологические параметры окружающей среды. Сохранение в Докладе за 2015 год, в целом, традиционности и преемственности в подаче материала, приводимые фактические данные, оценки и динамика отображаемых процессов позволяют оперативно получить объективную информацию по широкому кругу рассматриваемых в Докладе вопросов, произвести различные сравнения и сопоставления с данными докладов за предыдущие годы.

Материалы Доклада за 2015 год позволяют сделать следующие основные выводы:

1. Самарская область относится к регионам с высоким уровнем антропогенной нагрузки на природную среду. Современная экологическая ситуация сложилась исторически и обусловлена большой плотностью населения (примерно в 2 раза выше, чем в среднем по ПФО), высоким уровнем урбанизации, отраслевой специализацией и географической концентрацией хозяйств, значительной нарушенностью основных природных ландшафтов и практически полным отсутствием территорий, не затронутых хозяйственной деятельностью. Большое воздействие на степень загрязненности поверхностных вод в пределах области оказывает так называемое «транзитное» загрязнение – сформировавшийся уровень загрязнения водных ресурсов на территории регионов, расположенных выше по течению рек бассейна реки Волги.

2. Для территории области характерно длительное многофакторное, многокомпонентное антропогенное воздействие на окружающую среду; основными её загрязнителями являются транспорт (в первую очередь автомобильный), предприятия энергетики, нефтеперерабатывающей, нефтехимической, химической, машиностроительной промышленности, жилищно-коммунальное и сельское хозяйство. В 2015 году (как и за ряд предыдущих лет) на территории области в целом наблюдались незначительные изменения основных показателей, характеризующих состояние окружающей природной среды, что в целом подтверждает наличие тенденции некоторой стабилизации в системе «природа-человек».

3. Анализ динамики валовых выбросов в атмосферу области от стационарных источников позволяет сделать вывод, что за 2010-2015 годы произошло снижение объема выбросов загрязняющих веществ от стационарных источников загрязнения на 15,4% за весь период (средний объем выбросов за этот период составил 277,5 тыс. тонн в год). По результатам наблюдений 2015 года состояние загрязнения атмосферного воздуха во всех городах Самарской области оценивалось как «низкое», что обусловлено введением новых санитарно-гигиенических нормативов на формальдегид. В настоящее время на территории губернии нет городов с «повышенным», «высоким» и «очень высоким» уровнем загрязнения воздушной среды, однако в восьми городах (за исключением Похвистнево) максимально разовые концентрации одного или нескольких загрязняющих веществ превышают уровень 1 ПДК.

4. В 2015 году зарегистрирован 21 случай высокого загрязнения (ВЗ) и 4 случая
экстремально высокого загрязнения (ЭВЗ) в воде рек:
- Ветлянское вдхр. – 1 случай ВЗ соединениями марганца;
- р. Чагра – 1 случай ВЗ соединениями марганца;
- р. Падовая – 4 случая ВЗ (сульфиды и сероводород, ХПК, марганец, БПК₅) и 2 ЭВЗ (содержание кислорода и азот аммонийный);
- р. Самара - 1 случай ВЗ соединениями марганца;
- р. Чапаевка - 14 случаев ВЗ (азот аммонийный, БПК₅) и 2 случая ЭВЗ соединениями марганца.

Качество воды Куйбышевского водохранилища в створах у г.Тольятти улучшилось в пределах класса, вода характеризовалась как "загрязненная" 3 А класса.

Качество воды Саратовского водохранилища в районе г.о.Тольятти и в районе г.Сызрани в 2015 году в целом не изменилось, вода характеризовалась как "загрязненная" 3 А класса качества.

Характерными загрязняющими веществами в обоих водохранилищах являются трудноокисляемые органические вещества (по ХПК) и соединения меди.

В 2015 году:
- ухудшилось качество воды рек: Сок, Кондурача, Кривуша, Крымза - "грязная" 4 А класса, Падовка - "экстремально грязная" 5 класса;
- не изменилось качество воды в реках: Сургут, Чагра - "грязная" 4 А класса; Самара, Съезжая, Большой Кинель - "очень загрязненная" 3 Б класса; Чапаевка - "грязная" 4 Б класса;
- улучшилось качество воды рек: Безенчук - "очень загрязненная" 3 Б класса.

5. По гидробиологическим показателям уровень загрязнения Куйбышевского и Саратовского водохранилищ в целом в 2015 году, как и в 2014, характеризовался II—III классом в толще воды, придонный слой Куйбышевского водохранилища II классом, Саратовского — II-III классом.

Уровень загрязнения малых рек, как в толще воды, так и в придонных слоях характеризовался как II-III класс.

6. Содержание нефтепродуктов в донных отложениях водных объектов Самарской области в отчетном году находилось в интервале от 0,010 до 0,461 мг/кг. Степень загрязненности донных отложений обследованных водных объектов, как и в предыдущие годы, различна: от "чистых" до "средне загрязненных". К "чистым" относятся донные отложения рек Чагра, Чапаевка и Большой Кинель. Слабо загрязненными" характеризовались донные отложения рек Сургут, Безенчук, Сок (1 км выше впадения р. Сургут) а также участок Куйбышевского водохранилища в районе г.о. Тольятти. К "средне загрязненным" относились донные отложения рек Сок (7,5 км ниже н.п. Сергиевск) и участки Саратовского водохранилища в черте г.о.Самара и Сызрань.

7. Загрязнение снежного покрова области относилось к допустимому уровню; в пробах снега превышение гигиенических нормативов отмечалось лишь по одной примеси – азоту аммонийному.

8. Почвы Самарской области на отдельных участках наблюдений были загрязнены весной остаточными количествами пестицидов – ОК ГХБ, далапона, трефлана, ТХАН; осенью – остаточными количествами ОК ГХБ, трефлана, ТХАН. По содержанию тяжелых металлов почвы относились к «допустимой» категории загрязнения. По содержанию нефтепродуктов в поверхностном слое почвы превышение установленного расчетного критерия для Самарской области отмечалось в парке пансионата «Дубки» и парке «60 лет Октября».

9. Радиационная обстановка была стабильной и находилась в пределах естественного радиационного фона. Величины мощности экспозиционной дозы гамма излучения (МДЗД), измеряемые на метеостанциях области, находились в пределах нормы. Уровень загрязнения радиоактивными выпадениями в городах Самара и Тольятти соответствовал средним значениям за предыдущие годы. Концентрации суммарной бета-
активности радиоактивных аэрозолей в приземном слое атмосферы в г.о. Самара также соответствовали средним значениям за предыдущие годы. Экстремально высоких и высоких уровней радиационного загрязнения не наблюдалось.

10. При небольшом снижении объема валового регионального продукта в 2015 году (96,8% к 2014 году), в области значительно сократился объем образования отходов — как в целом (64,9% от показателя 2014 года), так и промышленных отходов (73,1% от 2014 года). При снижении общего объема перерабатываемых отходов на 24,5% по сравнению с 2014 годом, наблюдался рост доли использования отходов от объема их образования — 35,9% (2014 год — 30,9%). Продолжает оставаться актуальным решение вопросов утилизации и переработки больших объемов отдельных видов промышленных и сельскохозяйственных отходов. Несмотря на некоторые подвижки (рост мощностей по сортировке отходов, внедрение элементов раздельного сбора), наиболее актуальной на региональном уровне остается проблема переработки и утилизации бытовых отходов.

11. В 2015 году в области продолжилась реализация комплекса мер по охране и воспроизводству лесов, в первую очередь — по защите лесов от пожаров. Осуществленный комплекс мер позволил в 2015 году обеспечить удовлетворительное санитарное состояние лесов области.

12. В 2015 году продолжали осуществляться мероприятия по воспроизводству минерально-сырьевой базы позволили обеспечить прирост запасов нефти по категории ABC1 по новым месторождениям и пересчету запасов других месторождений на 20,6 млн.т., по категории запасов С2 - на 4,8 млн.т.

В отчетном году выполнено частичное списание балансовых запасов питьевых вод, в связи с чем, на конец 2015 г. произошло уменьшение общего количества запасов подземных вод для ХПВ и ПТВ на 40,35 тыс. м³/сут.

13. По данным мониторинга биоресурсов, в 2015 году численность и видовой состав животного мира, рыбных ресурсов области в целом не претерпели существенных изменений по сравнению со средними показателями за последние годы. Ихтиофауна рыбьих водоемов Самарской области представлена более 25 видами рыб. На территории Жигулецкого государственного заповедника выявлены новые виды птиц, в национальном парке «Бузулукский бор» отмечается увеличение численности особей лося, кабана, косули. Это результат последовательного осуществления комплекса мер по охране, воспроизводству, сохранению мест обитания и созданию условий для естественного воспроизводства многих видов фауны (хищных птиц, ценных видов растительноядных рыб и др.). Данному факту способствует и развитие сети ООПТ регионального значения — это 208 памятников природы на площади 90 322,85 га.

14. В регионе последовательно развивается системная деятельность по экологической информации, образованию и повышению уровня экологической культуры населения, растет активность природоохранных и общественных экологических организаций.

В 2015 году деятельность органов исполнительной власти, территориальных управлений федеральных природоохранных органов, ряда крупных и средних предприятий, научно-исследовательских и проектных организаций, экологически активного населения области способствовала закреплению имеющихся тенденций на снижение уровня негативного воздействия на окружающую среду, сохранению биоразнообразия, обеспечению экологической безопасности и благоприятных условий жизни населения региона. Основными направлениями деятельности остаются применение программно-целевых методов в планировании и реализации экологической политики, совершенствование регионального природоохранныго законодательства и практики регулирования отношений в этой сфере, повышение эффективности использования имеющихся финансовых и материальных ресурсов, дальнейшая реализация программы природоохранного развития, расширения участия широких слоёв населения в реальной природоохранный деятельности.
Условные сокращения

АЭ – аэрогеологическая станция
БПК – биологическая потребность кислорода
БС – Балтийская система
ВБР – водные биологические ресурсы
ВЗ – высокое загрязнение
ВООП – Всероссийское общество охраны природы
ГВК – государственный водный кадастр
г/кв.см (г/см²) – грамм на квадратный сантиметр
г.о. – городской округ
г.п. – городское поселение
г/л – грамм на 1 литр
ГТК – гидротехнический коэффициент
Селянинова
ГТС – гидротехническое сооружение
ГХЦГ – гексахлорциклогексан
ГЭС – гидроэлектростанция
ДДТ – дихлордифенилтрихлорэтан
ДДЭ – дихлордифенилтрихлорэтilen
ИЗА – индекс загрязнения атмосферы
им. – имени
кг – килограмм
кв.м (м²) – квадратный метр
км – километр
кв. км (км²) – квадратный километр
КолАП – Кодекс административных правонарушений
КОС – канализационное очистное сооружение
КРС – крупный рогатый скот
куб.м (м³) – кубический метр
м – метр
м/с (м/с) – метров в секунду (кубических метров в секунду)
мг/куб.м (мг/м³) – миллиграмм на кубический метр
мг/л – миллиграмм на литр
мкР/ч – микрорентген в час
млн. – миллион
млрд. – миллиард
мм – миллиметр
м.р. – муниципальный район
МРОТ – минимальный размер оплаты труда
МС – метеостанция
м/с – метр в секунду
МЭД – мощность экспозиционной дозы
НМУ – неблагоприятные метеорологические условия
НПГ – нормальный подпорный горизонт
и.п. – населенный пункт
ОБУВ – ориентировочно безопасные уровни воздействия
ОДК – ориентировочно допустимая концентрация
ОДУ – оптимально допустимый улов
ОК – остаточное количество
ООПТ – особо охраняемые природные территории
ОСО – оценка состояния озонового слоя
ОЯ – опасное явление

ПДК – предельно допустимая концентрация
ПДК м.р. – максимально разовая предельно допустимая концентрация
ПДК с.с. – среднесуточная предельно допустимая концентрация
ПДС – предельно допустимые сбросы
ПКО – приземная концентрация озона
ПНЗ – пункт наблюдения за загрязнением
ППР – плотность потока радона
ПСО – проект совместного осуществления
ПФО – Приволжский федеральный округ
ПЭТ – полиэтилентерефталат
п.г.т. – поселок городского типа
пог. – погонный (метр, километр)
пос. – поселок
п.п. – процентный пункт
РАН – Российская Академия наук
рис. – рисунок
руб. – рублей
РФ – Российская Федерация
с. – село
см – сантиметр
с.п. – сельское поселение
ст. – станция
т – тонна
ТБО – твердые бытовые отходы
tys. – тысяча (тысяч
Приволжское УГМС – Приволжское межрегиональное территориальное управление
Управление Федеральной службы по гидрометеорологии и мониторингу окружающей среды
УКИЗВ – удельный комбинаторный индекс загрязнения воды
усл – условно
УЧВ – условно чистые воды
ХОП – хлорорганические пестициды
ХПК – химическая потребность кислорода
ц/га – центнеров с гектара
ЭВЗ – экстремально высокое загрязнение
ЭГП – экзогенные геологические процессы
С – север
Ю – юг
В – восток
С – запад
СВ – северо-восток
СЗ – северо-запад
ЮВ – юго-восток
ЮЭ – юго-запад
Контактная информация

Министерство лесного хозяйства, охраны окружающей среды и природопользования Самарской области – тел./факс (8-846) 263-31-70; E-mail: MNR@samregion.ru

Министерство сельского хозяйства и продовольствия Самарской области – тел. (8-846) 332-09-68 факс (8-846) 332-12-50; E-mail: mcx@samregion.ru

Управление Федеральной службы по надзору в сфере природопользования (Росприроднадзор) по Самарской области – тел. (8-846) 332-90-90, факс (8-846) 270-41-83; E-mail: rpn63@rpn.gov.ru

Федеральное государственное бюджетное учреждение «Приволжское управление по гидрометеорологии и мониторингу окружающей среды»(ФГБУ «Приволжское УГМС») – тел. (8-846) 953-31-35, факс (8-846) 245-34-41; E-mail: gkk@pogoda-sv.ru; cks@pogoda-sv.ru

Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Самарской области (Управление Роспотребнадзора по Самарской области) – тел. (8-846) 260-38-25; E-mail: sanctr@fnsamara.ru

Отдел геологии и лицензирования по Самарской области (Самаранедра) Департамента по недропользованию по Приволжскому федеральному округу – тел. (8-846) 333-31-83, факс (8-846) 333-78-55; E-mail: samara@rosnedra.gov.ru

Управление Федеральной службы по ветеринарии и фитосанитарному надзору по Самарской области (Управление Россельхознадзора по Самарской области) – тел./факс (8-846) 342-53-00; E-mail: info@mcx-samara.ru

Средневолжское территориальное управление Федерального агентства по рыболовству – тел. (8-846) 270-97-33, факс (8-846) 372-26-62; E-mail: rosribolovstvo@mystep.ru

Отдел водных ресурсов по Самарской области Нижне-Волжского БВУ – тел./факс (8-846) 333-31-20; E-mail: ovr-samara@mail.ru

Департамент охоты и рыболовства Самарской области – тел. (8-846) 207-77-95, факс (8-846) 334-21-99; E-mail: dor@dor.samara.ru

ФГБУ «Национальный парк «Бузулукский Бор» – тел./факс (8-35342) 37-6-25; E-mail: dub36@yandex.ru

ФБУЗ «Центр гигиены и эпидемиологии в Самарской области» – тел./факс (8-846) 260-37-99; E-mail: all@fguzsam.ru

ФГБУ «Жигулевский государственный природный биосферный заповедник им. И.И. Спрывгина» – тел. (8-84862) 3-78-38, факс (8-84862) 2-38-55; E-mail: zhiguli1927@yandex.ru

ФГУ Национальный парк «Самарская Лука» – тел./факс (8-848-62) 2-14-95; E-mail: parkluka@yandex.ru

Управление Федеральной службы государственной регистрации, кадастра и картографии по Самарской области – тел. 8 (846) 333-07-35; E-mail: mail@samregistr.ru

Институт экологии Волжского бассейна РАН – тел. (8-8482) 48 99 77, факс (8-8482) 48-95-04; E-mail: iebras2005@mail.ru

Фонд социально-экологической реабилитации Самарской области - тел. 8 (846) 333-33-44; E-mail: fond_serso@samtel.ru

ГБУ СО «Природоохранный центр» – тел./факс (846) 276-02-33, 276-02-12; E-mail: gbu_priroda_centre@samaramail.ru